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Abstract
In everyday life people need to make choices without full information
about the environment, which poses an explore-exploit dilemma in which
one must balance the need to learn about the world and the need to obtain
rewards from it. The explore-exploit dilemma is often studied using the
multi-armed restless bandit task, in which people repeatedly select from
multiple options, and human behaviour is modelled as a form of rein-
forcement learning via Kalman filters. Inspired by work in the judgment
and decision-making literature, we present two experiments using multi-
armed bandit tasks in both static and dynamic environments, in situations
where options can become unviable and vanish if they are not pursued. A
Kalman filter model using Thompson sampling provides an excellent ac-
count of human learning in a standard restless bandit task, but there are
systematic departures in the vanishing bandit task. We explore the nature
of this loss aversion signal and consider theoretical explanations for the
results.
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Introduction

In everyday life we make a variety of decisions ranging from simple questions (e.g.,
what should I have for lunch?) to complex life choices (e.g., should I change jobs?).
Often we need to make these choices without full information about what the payoffs
will be, and in an environment where the payoff distribution itself can change over time
– some careers might be lucrative today but irrelevant tomorrow – posing a complex
explore-exploit dilemma for the decision maker (Mehlhorn et al., 2015). The explore ex-
ploit trade-off has been studied in a variety of literatures including machine learning
(Kaelbling, Littman, & Cassandra, 1998), statistics (Wald, 1947) and psychology (Wilson,
Geana, White, Ludvig, & Cohen, 2014). In the psychological literature these problems are
often studied using multi-armed bandit problems, where the decision maker is presented
with several possible options that they must repeatedly choose between, and the distri-
bution of rewards associated with each option is unknown to the decision maker (e.g.,
Acuna & Schrater, 2010; Anderson, 2012; Banks, Olson, & Porter, 1997; Biele, Erev, &
Ert, 2009; Cohen, McClure, & Yu, 2007; Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006;
Reverdy, Srivastava, & Leonard, 2014; Speekenbrink & Konstantinidis, 2015; Steyvers, Lee,
& Wagenmakers, 2009; Yi, Steyvers, & Lee, 2009; Zhang & Yu, 2013). For simpler versions
of the multi-armed bandit problem, there are closed form solutions for optimal decisions
(Whittle, 1980) but in general this is not the case (see Burtini, Loeppky, & Lawrence, 2015).

There is a relatively well-established pattern of findings for human performance in
this kind of sequential decision task. For instance people typically show an inherent pref-
erence for information (Bennett, Bode, Brydevall, Warren, & Murawski, 2016; Navarro,
Newell, & Schulze, 2016), though there are a number of learning and decision mak-
ing problems that show different patterns (Gigerenzer & Garcia-Retamero, 2017; Iigaya,
Story, Kurth-Nelson, Dolan, & Dayan, 2016; Zhu, Xiang, & Ludvig, 2017). Moreover, the
tendency to engage in exploratory behaviour changes systematically: it increases with
cognitive capacity (Hills & Pachur, 2012), aspiration level (Hausmann & Läge, 2008), and
level of resources (Perry & Barron, 2013), decreases with age (Mata, Wilke, & Czien-
skowski, 2013), and is influenced by prior knowledge about payoff distributions (Mulder,
Wagenmakers, Ratcliff, Boekel, & Forstmann, 2012) and beliefs about the volatility of the
environment (Navarro et al., 2016; Yi et al., 2009). Finally, the decision policies that hu-
man and machine agents employ typically shift when the environment is in some sense
responsive (e.g. Bogacz, McClure, Li, Cohen, & Montague, 2007; Gureckis & Love, 2009;
Hotaling, Navarro, & Newell, 2018; Neth, Engelman, & Mayrhofer, 2014).

In this paper we consider a related though somewhat distinct issue. The inherent
viability of options in real life depends on the extent to which one pursues them. If I do
not exercise, my ability to pursue an athletic career is greatly reduced, and if I do not
show up for a first date I’m unlikely to be asked to go on a second. A house I wish to
purchase will likely only remain on the market for a limited amount of time. In many
situations the viability of an option is entirely beyond my control, but in others it is
dependent on the investment of effort in pursuing the option. Perhaps I may not want
to go to the workshop on Friday, but if I do not register my interest in it on Monday I
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will lose my place, so a modest amount of effort is required now in order to preserve my
ability to pursue the option later.

This problem has not received as much interest as other variations on the explore-
exploit dilemma, but there is some research on it. Shin and Ariely (2004) presented peo-
ple with a variation of the three-armed bandit task in which each option was associated
with a fixed reward distribution, and all three options had the same expected value. The
task imposed switching costs, with participants accruing a penalty (either monetary or
opportunity cost) when switching between options. Whenever an option was left uncho-
sen for a sufficiently long time it would “vanish” and subsequently become inaccessible
to participants for the remainder of the task. In the original work human behaviour ap-
peared irrational, with participants preferring to accrue considerable penalty in order to
maintain all three options even though they had the same value. Later papers using a
larger number of options that could differ in their value suggested a slightly more mod-
erate view: people tend to prune the options down to a small number of relatively good
options, but are reluctant to limit themselves to a single option (Ejova, Navarro, & Perfors,
2009). Nevertheless, the central finding that people are reluctant to trim the option set
down to the single best possibility has been replicated multiple times (Bonney, Plouffe, &
Brady, 2016; Ejova et al., 2009; Neth et al., 2014).

Theoretically, the explanation for this behaviour has tended to focus on loss aversion
(Shin & Ariely, 2004) and the desire to preserve flexibility in future choices (Neth et al.,
2014). Perhaps surprisingly, then, there are very few studies in the explore-exploit litera-
ture – at least to our knowledge – that have employed a “vanishing options” design in a
restless bandit context. After all, one very obvious reason to show aversion to option loss
is to hedge one’s bets against the possibility that the payoff distributions might change.
In an environment where good options can go bad simply due to unpredictable fluctua-
tions, it is natural to want to keep options open. Suggestive evidence that people might
be appropriately sensitive to this comes from Neth et al. (2014), who took an ecological
perspective to the Shin and Ariely (2004) task and found that when the rewards associated
with each option would diminish the more they are chosen (“exhaustive” environments)
people tended to switch between options in order to keep more options viable moreso
than when the environment is stable or when options improved with use (“progressive”
environments).

With this in mind we examine human performance on several variations of a vanish-
ing bandits task, involving different levels of volatility (i.e., rate of change to the reward
distribution), comparing it to a standard restless bandit task in which options do not van-
ish. To provide a point of comparison, we follow Speekenbrink and Konstantinidis (2015)
and apply a Bayesian reinforcement learning model employing a Kalman filter learning
rule (Daw et al., 2006; Kalman, 1960) and a Thompson sampling decision rule that selects
options with probability proportional to the likelihood that they are the maximum utility
option (Chapelle & Li, 2011; Thompson, 1933). Using the Kalman filter as a quasi-ideal
observer model – setting all parameters to veridical values for the task – we replicate ear-
lier results showing that human performance in the standard restless bandit task is closely
approximated by the Kalman filter model. Armed with this knowledge, we take the same



LOSS AVERSION WITH RESTLESS BANDITS 4

model, apply it to the vanishing bandit task and investigate the systematic differences
between the Kalman filter model and human performance in the vanishing bandit task.

Experiments

Method

Task. The experimental task was designed to be a compromise between the so-called
“doors” task used to study option loss (Shin & Ariely, 2004) and a more traditional multi-
armed bandit task. Participants were presented with a simple experimental interface
delivered through a web browser, that consisted of six distinct options labelled A to F
that could be selected by clicking on the appropriate button, illustrated in Figure 1a. The
instructions explained that during the “game” they would have a budget of 50 “actions”
(button clicks), that every time they selected an option they would receive points, and
that the goal of the task was to earn as many points as possible with their 50 clicks. On
each trial they would be shown the points they received in a visually salient way (see
Figure 1b) and feedback remained on screen for 800ms. The number of points accrued
and the number of actions left stayed onscreen at all times.

The task as described closely mirrors a typical multi-armed bandit task. To introduce
option loss into this task, a variant on the game introduced the concept of an “availability
counter” displayed adjacent to the option. The instructions explained to participants that
this counter indicated how long it would be (in terms of number of actions) before this
option “vanished” if it was not selected. All six availability counters started at a value of
15. The availability counters for every non-selected option would decrease by one after
every action, whereas the counter for the selected option would reset to 15. To ensure that
the availability counters were visually salient, they were colour-coded: options that were
close to vanishing (availability 1-3) were shown in red, options that would disappear
soon (availability 4-6) were shown in orange, and other options were shown in green
(availability 7-15). Once the availability of an option reached zero it “expired”: the option
and the corresponding response button both disappeared from the screen and could no
longer be selected.

In all versions of the task, the rewards r generated by each option were sampled from
a normal distribution with mean µ and fixed standard deviation σn = 6. Two of the
six options (randomly chosen) were initially set to have mean reward µ = 20, one had
mean µ = 40, one had µ = 60 and the remaining two had µ = 80. However, for most
participants the expected value of each option drifted randomly across trials: the mean
µt+1 for any given option on trial t + 1 was sampled from a normal distribution with
centred on the mean from the previous trial µt, with variability given by the standard
deviation σo (which differed between conditions).

Design. Both experiments employed a 2 x 3 between-subjects design, with the avail-
ability of options (constant or diminishing) and the rate of environmental change (static,
slow and fast) as the manipulated variables. For the constant availability condition, op-
tions remained available throughout the task, whereas in the diminishing availability
condition participants were given the version of the task in which options could vanish,
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(a)

(b)

Figure 1. (a) Schematic illustration of the experiment as it appeared to participants in the decreas-
ing availability condition. Each of the six options (A-F) is shown with a colour-coded “availability
counter”, indicating the number of trials left before the option vanishes if left unchosen. The color
scheme used red for immediate (1-3), orange for soon (4-6), and green for later (7-15). The dis-
play for the constant availability condition removed the availability counters, but was otherwise
identical (b) Feedback as it was shown to participants.

as described above. To create the three levels of environmental change, we set σo = 0 in
the static condition, σo = 6 in the slow condition, and σo = 12 in the fast condition.

The two experiments were matched in every detail except one. In Experiment 1,
the rewards r were constrained to lie between 1 and 99 points, and a corresponding
constraint was placed on the mean µ.1 In Experiment 2 the upper bound was removed,
allowing the rewards to increase well beyond the initial value. The original motivation
for doing so was to see what effect the ceiling has on people strategies, but it quickly
became apparent that removing the upper bound can change the dynamics of the task
environment. An illustration of what the dynamic structure of the environment looked
like for static, slow and fast conditions in both experiments is shown in Figure 2. When the
dynamics apply only over a bounded range (Experiment 1) it is quite typical to see the
best options change: good options go bad and vice versa. When the bound is removed
(Experiment 2) it is quite common to see a “runaway winner” where one option quickly
dominates over all the others and remains dominant for the entire task. Accordingly,
the main goal for pursuing both versions of the task was exploratory, to see how people
respond to environments with these different dynamic structures.

Participants. Workers from Amazon Mechanical Turk were recruited to participate
in the experiment (400 in Experiment 1, 300 in Experiment 2), and assigned randomly to
conditions. Informed consent was obtained from all participants. As per the exclusion
criteria, two participants were excluded from analyses because they selected the same
option on every trial. For Experiment 1, 179 participants identified as female, 219 as
male, and 2 selected other. Mean reported age was 34.9 (SD = 11.4; range = 18-76).

1This was implemented by forcing any values outside the range to lie at the boundary value, producing a
slightly "sticky" boundary.
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Figure 2. Illustration of the dynamics used in both experiments and all three conditions.

For Experiment 2, 110 participants identified as female, 190 as male. Mean reported
age was 34.4 (SD = 10.4; range 18-73). In both experiments participants were almost
exclusively (>95%) located in the United States. Tasks took about 10 minutes to complete
and participants were paid US$1.70 for their time.

Materials and procedure. Experiments were implemented as a custom web applica-
tion hosted using Google Cloud Platform, and made available to participants via Amazon
Mechanical Turk. At the beginning of the experiment, participants were told they were
taking part in a decision-making game as part of a short psychological study investigat-
ing how people make decisions. They were then presented with a consent form which
informed them about the study and its possible risks; the nature of confidentiality and
disclosure of information; and their compensation for completing the task. After provid-
ing consent and demographic information, they received instructions corresponding to
their assigned condition. To ensure that the participants understood the task, they then
had to complete a knowledge check which consisted of three multiple choice questions.
Failure to answer all three questions correctly resulted in participants being redirected
back to the instructions page to recheck their knowledge before retaking the knowledge
check. Participants were then directed to the actual game and completed it as per instruc-
tions of the previous page. Following the approach taken in earlier papers (Hotaling et
al., 2018; Navarro et al., 2016) each participant played the “game” three times (where each
game is a 50 trial bandit task), always in the same condition. At the end of each game,
participants were told how many points they had achieved, in comparison to the theo-
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Figure 3. Average points awarded per action, plotted as a function of game, experiment and
condition. Grey violin plots show kernel density estimates of the between subject distribution
(averaged over trial), and solid markers show the average across participants.

retical maximum (and minimum) scores that could be achieved if one were to select the
best (or worst) option on every trial. After participants had completed the three games,
a completion screen appeared that signalled the end of the experiment. They were then
given a completion code to receive payment through Amazon Mechanical Turk.2

Results and discussion

As a simple measure of performance we calculated the average number of points
per action that each participant received during the game. Illustrating this, the solid
markers in Figure 3 plot the mean score per action for every experiment, game, dynamic
condition and availability condition; grey violin plots display kernel density estimates
of the distribution across subjects. Although point scores are not easy to compare across
conditions or experiments, they are comparable across games. As shown in Figure 3 there
is a slight tendency for scores to improve over games. In Experiment 1, the mean of points
awarded per action rose from 65.5 in game 1 to 70.5 by game 3, with 283 of 400 (71%) of
participants scoring higher on the final game than on the initial one. In Experiment 2, the
numbers were 81.0 and 87.2 respectively, with 202 out of 300 (67%) of participants scoring
higher on the final game. For simplicity our initial analyses aggregate performance across
games, but we return to this topic when introducing model based analyses.

2Source code for the experiments is included in the OSF repository along with data and analysis code, but
for convenience demonstration versions of the experiment are available at http://compcogscisydney.org/
exp/#vanish

http://compcogscisydney.org/exp/#vanish
http://compcogscisydney.org/exp/#vanish
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Figure 4. Human performance in the task. Panels plot the probability of choosing a "good" option
(one of the top two) on every block of five trials, broken down by experiment, availability and
dynamics.

To examine performance at a finer grain, we classified individual responses as a
“good” choice if it is among the two options with highest expected reward on that trial,
including options that have been allowed to expire. Using this measure, the results for
all six conditions in both experiments are plotted in Figure 4, aggregated across subjects
and repeated games, and plotted in blocks of five trials. As is clear from inspection par-
ticipants learned to make good choices. When the environment was static and option
availability was constant, participants chose good options in the final block on 96% of
cases in Experiment 1 and 93% in Experiment 2, but when options could vanish in the
decreasing condition these numbers fell to 82% and 82% respectively. The same pattern is
observed in the slowly-changing restless bandit task, with performance levels of 68% and
75% in the constant availability conditions in Experiments 1 and 2 falling to 54% and 60%
in the decreasing condition. In the fast-changing environment there was a difference be-
tween Experiments caused by the fact that the unbounded drift in Experiment 2 allowed
for the possibility of a “runaway winner” – where one option grows much faster than all
the others as illustrated in the lower left panel of Figure 2 – so final performance in the
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Figure 5. The average number of options still viable in the decreasing availability condition, plotted
separately for the three dynamic conditions, two experiment and for every block of five consecu-
tive trials.

constant availability was only 50% in Experiment 1 but 70% in Experiment 2. Importantly,
however, the effect of allowing options to become unviable was the same as in other cases:
the performance drops to 41% and 53% respectively. In every case a Bayesian t-test found
strong evidence for a difference in the proportion of good choices constant availability
and decreasing availability (Bayes factors for the alternative, BF10, were never less than
47).3

To what extent do people keep options alive in the decreasing availability condition?
Figure 5 plots the average number of options still viable as a function of trial block, rate
of change, and experiment. Visual inspection of the plot suggests that there are no differ-
ences between Experiments 1 and 2 for the static and slow change conditions (BF01 = 4.8
and 5.1 respectively), but in Experiment 2 people retained fewer options in the fast change
condition than they did in Experiment 1 (BF10=89). The latter is perhaps unsurprising
in light of the fact that the dynamics of the fast change environment in Experiment 2 are
rather different from those in Experiment 1, as depicted in Figure 2.

One question of theoretical interest is whether the number of options that remain
viable changes as a function of the dynamics of the environment. In Experiment 1, a

3Analyses were conducted using the BayesFactor R package version 0.9.12-2 (Morey & Rouder, 2015),
using default priors in all cases (i.e., t-test analyses placed Cauchy priors with scale r =

√
2/2 over stan-

dardised effect sizes for H1, and ANOVA analyses used JSZ priors with medium scale value r = 1/2). See
Rouder, Speckman, Sun, Morey, and Iverson (2009) and Rouder, Morey, Speckman, and Province (2012) for
specifics. The t-tests reported here used the mean probability of a good choice across all trials as the depen-
dent measure (in order to minimise sensitivity to noise), but the result is robust to the choice of operational
measure: the same pattern of results is found if the analyses are conducted looking only at the final trial
block.
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Bayesian ANOVA suggests there is moderately strong evidence (BF10 = 19.1) for the claim
that on average people retained slightly more options – operationally defined as the av-
erage number of options still viable, taken across all trials – as the volatility of the envi-
ronment increased, rising from 4.6 (SD = 0.9) in the static condition to 4.9 (SD = 1.1) in
the slow change condition and 5.2 (SD = 0.8) in the fast change condition. In Experiment 2,
however the evidence weakly favoured a null effect (BF01 = 6.7): the average number of
options retained shows no systematic pattern (mean = 4.7, 4.8 and 4.6 in static, slow and
fast respectively; SD = 0.9, 1.1, 1.1).

Model based analysis

The fact that performance declines when option threat is introduced to the task is
consistent with previous literature, and is unsurprising. To obtain a more detailed per-
spective on how people respond to this manipulation, a computational approach is help-
ful. To minimise researcher degrees of freedom, our approach is derived from the sys-
tematic investigation of restless bandit tasks by Speekenbrink and Konstantinidis (2015).
Specifically, we relied on the model that provided the best account of the largest number
of individual participants in that paper, namely a Kalman filter learning model with a
Thompson sampling decision rule. The Kalman filter learning rule provides a Bayesian
approach to reinforcement learning (Daw et al., 2006) that is well-suited to learning in
dynamic environments. According the Kalman filter model, the learner’s knowledge is
represented by a posterior distribution over the expected reward associated with each op-
tion4, and under a Thompson sampling decision rule the model selects options with with
probability proportional to the chance that they have maximum utility. See Appendix for
details.5

To provide a strong test of the Kalman filter model’s ability to capture human be-
haviour on a standard (i.e., constant availability) restless bandit task, we do not estimate
any free parameters. Instead, all parameters associated with the noise and volatility in the
environment were fixed a priori at the true values for each condition, and prior distribu-
tions were fixed to be very diffuse (see Appendix). Moreover, the model was not yoked to
participant responses, and predicted the sequence of responses without being fed infor-
mation about how human participants responded in the task (e.g., Steingroever, Wetzels,
& Wagenmakers, 2014; Yechiam & Busemeyer, 2005). In all cases, model predictions are

4More generally one might use prospect theory (Tversky & Kahneman, 1992) to specify reference-point
dependent nonlinear utility functions as Speekenbrink and Konstantinidis (2015) did, but in this case a
simpler approach where the utility is assumed to be proportional to the number of points received provided
a perfectly adequate account of the data, so we avoid introducing this complexity here.

5It is worth noting that the manner in which we are using the Kalman filter model here is roughly in ac-
cordance with what (Tauber, Navarro, Perfors, & Steyvers, 2017) refer to as “descriptive Bayesian modelling".
While we do use it as a sensible standard against which we can evaluate human behaviour, we do so because
it has a track record of performing well as an empirical model of human reinforcement learning. The fact
that it has a meaningful interpretation as a form of probabilistic Bayesian reasoning is an added bonus as
it allows us to link model parameters to assumptions about the world. We do not claim that it should be
viewed as a genuine normative standard for the task, though we note that in practice human performance
rarely surpasses the Kalman filter in our data.
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averaged across 500 independent simulations.

Proportion of good choices. Despite the somewhat stringent nature of the test, the
Kalman filter model makes good predictions about human performance in the standard
restless bandit task, as shown in the top row of Figure 6. These plots show every data
point from the human data in Figure 4 plotted on the y-axis, broken down by game
number, against the corresponding choice probabilities that emerged from the Kalman
filter model simulations on the x-axis. Across two experiments, three levels of volatility
and ten trial blocks, the correlation between model predictions and human performance
ranged from r = .93 to r = .96 across games. Perhaps more impressively, the best fitting
regression line (solid line) is only slightly below the “perfect” regression line with slope
zero and intercept one (dotted line). In light of this, it is not unreasonable to propose that
the decision strategies that human participants applied in the standard restless bandit
task are well-approximated by the Kalman filter model.

With this in mind, we can take the Kalman filter model and apply it to the decreas-
ing availability conditions, to obtain some insight into what “would have” happened if
participants had employed the same strategies in both versions of the task. When we do
this we obtain a systematic effect as illustrated in the lower panels of Figure 6. While
the model still correlates well with human performance (ranging from r = .83 to r = .96)
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the regression line is now substantially shallower, especially for the earlier games. When
compared against the Kalman filter model, people were much less likely to select a good
option in the vanishing bandit task, despite the fact that in the standard task human
performance and the Kalman filter were largely indistinguishable.

Switching between options. A slightly different perspective is offered by Figure 7,
which plots the proportion of trials on which human participants switched options (i.e.,
made a different choice than the one made on the previous trial) against the correspond-
ing proportion for the Kalman filter model. Again, the plots are shown separately for
both experiments, all three games, all three dynamic conditions and both availability
conditions, with separate markers for each block of five consecutive trials. When the en-
vironment is static and option availability is constant (top right panel), human participants
switch between options at essentially the same rate as the Kalman filter throughout the
task and across all three games: the plot markers lie close the dashed line in all cases.
When volatility and option loss are introduced to the task, people switch between options
in a fashion that differs from the model.

Curiously, the two manipulations have different effects. First consider what happens
when volatility is added within a standard (constant availability) restless bandit task. The
top row of Figure 7 shows that in the slow change or fast change conditions people tended
to switch between options slightly less than the model (i.e., the markers tend to lie below
the dashed lines), which might be expected if people underestimate the volatility of the
environment. In contrast, consider the effect of adding option loss. Whereas previously
people were switching at a similar or reduced rate to the model, in almost every case
the plot markers in the bottom row of Figure 7 lie above the dashed line, indicating that
people now switch more often than the model. This would be expected if people are
engaging in some deliberate strategy to retain options, or are in some respect averse to
allowing the availability counter to drop too low.

Number of options retained. To explore how people adapted to the threat of option
loss in more detail, Figure 8 plots the average number of options that remain viable
at every stage of the task, for both human participants and the model. As is clear from
inspection in every case human participants retained more options than the model: by the
end of the task, human participants typically have about 3-4 options still viable, whereas
the Kalman filter typically retains only 1-2. Note also that although participants retained
fewer options in later games (i.e., in all six panels, the curves shift downward from game
1 to game 3, in no case does the number of options retained fall to the same level as the
Kalman filter model. Again this is suggestive of some form of aversion to option loss.

Choices by availability. If human participants are averse to option loss relative to the
Kalman filter model, what precisely is the nature of this difference? Do people roughly
follow the Kalman filter model on almost all trials, only occasionally shifting to “save” an
option on the very last trial before it vanishes? Is the signal driven by perceptual cues,
arising only when the option turns red (i.e., when availability drops to three or less)? Or
is the effect more continuous, in which the subjective utility associated with choosing an
option rises gradually the closer an option gets to vanishing? Although the task was not
designed to explicitly test this, we can obtain a preliminary answer computing the aver-
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Figure 7. Comparison of the probability of switching options, Kalman filter (x-axis) versus human
(y-axis). Every panel displays six plots, one for each experiment and game. Within each plot, in-
dividual markers are shown for every block of five trials, with trial block number increasing from
right to left. The panels separate the data by availability condition (rows) and dynamic condition
(columns). Human participants switch more often than the Kalman filter in the decreasing avail-
ability condition (bottom row), but in the constant conditions (top row) the switch rates are similar,
or show the opposite pattern with humans switching less often.

age probability of selecting any particular option as a function of its current availability
level for both human participants and the Kalman filter model and look at the differ-
ence between the two, thereby controlling for the fact that both humans and the model
will tend to ignore bad options. If participants are strategically “saving” options at the
last moment, we should see a spike in human choice probability at availability level 1,
whereas if the signal is perceptual this would appear over availability levels 1-3. Alterna-
tively, if a rising urgency explanation is correct, we should see a more gradual bias where
humans prefer to choose lower availability options than the model.

The results of this analysis are plotted in Figure 9. With one rather notable exception –
the “spike” at availability 10 – the pattern of results closely mirrors what we might expect
if loss aversion takes the form of a gradually rising signal. Across all three levels of
volatility there is a smooth, roughly linear relationship between the availability level and
the difference score. Visual inspection suggests the possibility that human performance
may mirror the Kalman filter model more closely in highly dynamic environments, at
least insofar as the correlation appears stronger on the left panel and the slope is flatter,
but given the exploratory nature of the analysis this suggestion is somewhat speculative.
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Figure 8. Average number of options remaining for human and model in the decreasing avail-
ability condition, aggregated across participants and model runs, and plotted separately for trial
block, dynamics condition, experiment and game number. Trial block number runs from right to
left within each plot.

Why does the spike at availability 10 occur? The answer is fairly unsurprising but
perhaps important. When human participants solve the task, a very typical pattern is
to cycle through the options A to F sequentially two or three times, strategically and
systematically exploring all six options before making any decisions about which options
are good and which are a bad. If one does this, the decrease in availability means that
(with 6 options that reset to availability 15 after they are selected) people will produce a
“run“ of choices at availability 10 during the exploratory phase. The Kalman filter model
has no equivalent behaviour. Because the model does not encode motor costs associated
with switching (why jump from option A to option D when option B is closer?) and does
not have any structured encoding of the task that would suggest that an “initial sweep”
through the options would be a sensible exploratory strategy, it produces no such pattern.
From the perspective of understanding aversion to option loss, the observed spike at 10 is
somewhat uninteresting, but the strategic nature of the human behaviour that produces
it is arguably of considerable interest for thinking about how people solve explore-exploit
problems more generally.
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General Discussion

Consistent with previous literature, human performance in short-horizon restless ban-
dit tasks is captured remarkably well with a Kalman filter learning rule and Thompson
sampling decision procedure (Speekenbrink & Konstantinidis, 2015). Even without pa-
rameter estimation and making purely a priori model predictions, the correlation is very
strong. When we introduce the threat of option loss to this task, there are systematic
departures. While the correlation between the Kalman filter model and human data re-
mains extremely strong there is a systematic shift in the regression line relating the model
and human behaviour. Relative to this model, people retain more options and make less-
rewarding choices.

These findings are consistent with the existing literature on option loss (Bonney et
al., 2016; Ejova et al., 2009; Neth et al., 2014; Shin & Ariely, 2004), but provide a stronger
test of the claim. The simple fact that options can vanish in a vanishing bandit task
means that two agents following the same underlying strategy might produce vastly
different responses – by using the Kalman filter model as the basis for comparing the two
conditions we can control for systematic differences in the structure of the task. Indeed,
it is notable that the Kalman filter model also performs worse in the vanishing conditions
than it does in the constant availability conditions even though (by design) it makes
responses using precisely the same learning and decision rules in both cases. Even so,



LOSS AVERSION WITH RESTLESS BANDITS 16

people’s choices in the vanishing conditions tend to be poorer than those of the Kalman
filter model, strongly suggesting that people employ different strategies when option loss
is present.

Explaining the effect of option threat

Why do people perform worse than the Kalman filter model in the decreasing avail-
ability conditions? The results seem intuitively plausible when viewed as a form of loss
aversion, but there are other possibilities that should be considered. For instance, one pos-
sibility is that these tasks involve a form of “choice overload”. Having too many options
can be overwhelming or demotivating (Iyengar & Lepper, 2000), and in a multi-armed
bandit task, maintaining representations of six possibly volatile reward distributions is
likely demanding and people need to trim down the options to something manageable.
Though intuitively appealing in one sense – anecdotally, it does feel cognitively demand-
ing to maintain representations of the values of six entities in working memory while
doing this task – it is unclear why an explanation based on cognitive load would apply
only when option viability is threatened.

Another possibility is the idea that people do not plan very effectively in the task.
Other work on multi-armed bandit tasks has argued that people are myopic planners
(Zhang & Yu, 2013) who do not look ahead very far when considering their next ac-
tion. Taken literally, however, a myopic planner should allow options to expire extremely
readily, especially when the environment is not too volatile. After all, an option that is
currently quite poor is extremely unlikely to suddenly become better in the near future,
and it would only be worthwhile retaining it if one’s planning horizon were quite long.
An alternative explanation, however, might acknowledge the possibility that people are
aware of the limitations in their planning: that is, a “loss averse” strategy of retaining
more options than one can foresee a use for might be viewed as a sensible hedge against
computational limitations. If I know that my true planning horizon needs to be quite
long but I am computationally limited, what should I do? Keeping one’s options open,
even if one is not quite sure why could be a very wise strategy, and is somewhat remi-
niscent of boundedly rational models of wishful thinking (Neuman, Rafferty, & Griffiths,
2014) and heuristic models of planning in machine learning (Szita & Lőrincz, 2008). In-
deed, to the extent that knowing when to allow an option to expire has an element of
“predicting one’s own future preferences” to it, it is very likely to be a difficult problem
to solve (Loewenstein & Frederick, 1997) and one that might induce a certain amount of
conservatism. Arguably this is not inconsistent with a loss aversion explanation, insofar
as loss aversion might be viewed as a sensible adaptation in light of these computational
limitations.

To the extent that the results do reflect loss aversion, it is worth thinking about the
connection between aversion to option loss as it is formalised here and in related pa-
pers (Ejova et al., 2009; Shin & Ariely, 2004) and how loss aversion is more typically
operationalised in restless bandit tasks. In Speekenbrink and Konstantinidis (2015), for
instance, a prospect theory approach based on Tversky and Kahneman (1992) was used
as a mechanism for capturing the aversion to losing some abstracted notion of reward as-
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sociated with a choice – points, or monetary rewards – whereas in vanishing bandit tasks
the losses operate at the level of entire options. If each option in a task is perceived as an
affordance (mechanism for future actions in the environment), it seems plausible to think
that the subjective feeling of loss aversion in this task is likely to be much stronger than in
a typical restless bandit task. Indeed, the experimental design is somewhat reminiscent
of tasks studying the endowment effect (Kahneman, Knetsch, & Thaler, 1990). At the
beginning of the task participants are “given” six labelled options: in one condition (con-
stant availability) these options are presented as fixed and enduring characteristics of the
world, and under these circumstances people value them “appropriately”, at least in the
sense of closely mirroring the pattern of behaviour shown by the Bayesian Kalman filter
model. In another condition (decreasing availability) the options available to participants
can be “taken away” by the experiment(er). It seems plausible that people feel a stronger
sense of possession or entitlement to the affordances linked to response options than they
do to more any abstract notion of points or even to modest amounts of money, producing
a rather large and systematic deviation from the Kalman filter as typically implemented.

Towards a computational account

Although the current work is limited in terms of the variety of modelling approaches
we have considered, exploring the space of possible models is a natural direction to ex-
tend this work in the future. In this respect, our empirical data provide a number of
hints. The (mostly) smooth pattern of deviation shown in Figure 9 suggests that the value
of returning to a diminishing option gradually increases with proximity to the disappear-
ance. The one departure from that pattern (the spike at 10) is interesting in and of itself,
as it strongly suggests a systematic exploratory strategy during the early stages of the
task (see Acuna & Schrater, 2010). Nevertheless, with the exception of this one system-
atic exploratory strategy, it does not seem technically difficult to capture the pattern of
behaviour within the Kalman filter framework.

The simplest possibility would be to suggest that different Kalman filter parameter
values apply when option threat is present. For instance, when options can vanish people
might act as though the world is more volatile than they otherwise would (e.g., increase
the parameter σw that governs beliefs about the rate of change in reward rates). This
would lead to increased exploration of alternatives, which in turn would ensure that fewer
options disappear. Alternatively, one could capture the effect by modifying the reward
function: the subjectively experienced reward rt associated with choosing an option might
depend not only on the number of “actual” points received, but also upon the effect that
the choice has on availability. That is, selecting an option that is about to expire might be
inherently rewarding because of the gain to the availability total.

Looking beyond the Kalman filter, one possibility is to use dynamic programming to
work out the optimal decision policy for the task under a variety of different assumptions
(e.g., Littman, 2009). For example, if people believe that the reward rates are more volatile
than it is (or the horizon for the task is longer than the 50 trials than it really is), a rational
strategy would be to “cling” to more options than are really needed. This would produce
sub-optimal behaviour in the task purely as a consequence of misconstruing the nature of



LOSS AVERSION WITH RESTLESS BANDITS 18

the problem. Another alternative is to consider heuristic models. In option loss problems,
after an initial exploratory sweep through the options, people might alternate between
exploitation phases (always select the best option) and exploration phases (preserve/try
all options). This two-mode strategy would be relatively simple to implement and could
potentially describe performance in a variety of problems.

Finally, the fact that human performance improves across games provides an avenue
for future modelling. The approach that we have taken in this paper is to give people
a series of short sequential decision making tasks, and consistent with our earlier work
adopting this approach (Hotaling et al., 2018; Navarro et al., 2016) there is a small but
consistent effect. In future work we hope to consider a wider variety of transfer effects
in order to develop computational models that describe the higher order learning that
people do within sequential decision tasks.

How is option threat interpreted?

Regardless of what formal account best captures human behaviour in the task, it
seems there is another puzzle: why does the signal scale in the linear fashion shown in
Figure 9? In the task as currently operationalised, an option that has availability level
11 is no more likely to vanish in the short term than an option with availability level
15. At these levels, the “threat” of vanishing is so distant that it ought not to have any
substantial effect on people’s behaviour even if they are averse to option loss – after all,
with a maximum of 6 options in the task, it would be possible for the decision maker
to revisit every other response option twice without any risk of losing an option with
availability 11. Realistically, it does not seem plausible to think that this task incorporates
any meaningful difference in “threat” between availability levels 11 and 15. Nevertheless,
the data do suggest that people treat these cases differently in the vanishing bandit task.
Despite the fact that the availability counter merely expressed the known length of time
before any losses would be incurred, and does not reflect any probability of immediate
loss, people responded to the counter as if it represented something more akin to an
increased hazard.

The reasons for this are not immediately apparent. In real life, of course, there are
many situations in which proximity to a threat does imply increased hazard, and so it
might be the case that people are simply over-generalizing from those situations. Some-
times proximity to a danger can increase the magnitude of the associated losses (e.g., being
closer to a heat source increases the amount of burning), and at other times it affects prob-
ability of incurring a loss (e.g., the closer to a predator one gets the greater the likelihood
of an adverse event). While this does sound plausible, it is also the case that there are
other scenarios that do not work this way. For instance, except at very close distances,
approaching the edge of a cliff does not increase the risk of falling off. The structure of
the vanishing bandit task has more in common with “falling off a cliff” than it does with
“being eaten by a tiger”, yet people treat it more like the latter. It is not immediately
obvious – to us at least – why falling off a cliff represents less of an ecologically plausi-
ble risk than being eaten by a tiger, so it is not clear why people appear to interpret the
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availability counter as if it reflected a rising hazard. This seems a worthwhile direction
for further work.
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Appendix

The Kalman filter provides a Bayesian reinforcement learning model that assumes
the utility of options across time follows a Gaussian process, and as such is fairly well
matched to the structure of the task. Our implementation of the Kalman filter model is
taken from Speekenbrink and Konstantinidis (2015), with one simplification: we assume
that the utility ut of the reward rt received on trial t is simply ut = rt, and do not fit a
subjective prospect curve. The Kalman filter estimate of the expected utility Ejt of option
j on trial t is calculated via a simple update rule:

Ejt = Ej,t−1 + δjtKjt
(
rt − Ej,t−1

)
where Ej,t−1 is the estimate of the expected utility from the previous trial, δjt is an indica-
tor function that equals 1 if arm j was chosen on trial t and 0 otherwise, and Kjt describes
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the Kalman gain,

Kjt =
Sj,t−1 + σw

2

Sj,t−1 + σn2 + σw2

In this expression σn is the learners belief about the standard deviation of the noise and
σw is their belief about the rate of change in the underlying stochastic process. For our ex-
amples we fix these at their true (ideal observer) values, yielding σn = 6 for all conditions,
and a value of σw that depends on the environment volatility: 0 in the static condition,
6 in the slow condition and 12 in fast condition. The value of Sjt is the variance of the
posterior distribution (after trial t) over the mean utility associated with option j and is
given by

Sjt = (1− δjtKjt)(Sj,t−1 + σw
2)

We set prior means and variances to Ej0 = 50 and Sj0 = 1000 respectively.
The decision rule we used is a variation of the Thompson sampling rule, also known

as probability of maximum utility, PMU. For option j on trial t, the learner’s posterior
belief about the mean reward associated with that distribution is Gaussian with mean
Ejt and standard deviation Sjt. We assume a stochastic decision rule where the perceived
value of this option vjt is represented by a single draw from this posterior (Vul, Goodman,
Griffiths, & Tenenbaum, 2014), and the decision maker always chooses the option with
maximum perceived value (i.e., arg maxj vjt). In some versions of the Thompson sampling
rule one samples proportional to the (posterior predictive) probability that the option
will yield the highest actual reward rt on trial t, whereas another variation might sample
proportional to the posterior probability that an option has the highest expected reward µt

on that trial. The latter version is implemented here.
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