Bayesian data analysis using JASP Dani Navarro

compcogscisydney.com/jasp-tute.html

Part I:Theory

- Philosophy of probability
- Introducing Bayes rule
- Bayesian reasoning
- A simple example
- Bayesian hypothesis testing

Part 2: Practice

- Introducing JASP
- Bayesian ANOVA
- Bayesian t-test
- Bayesian regression
- Bayesian contingency tables
- Bayesian binomial test

I.I Philosophy of probability

Idea #I: "Aleatory" processes

Probability is an objective characteristic associated with physical processes, defined by counting the relative frequencies of different kinds of events when that process is invoked

"Aleatory" processes

Frequentist statistics

Coin flipping is an aleatory process, and can be repeated as many times as you like

The probability of a head is defined as the long-run frequency

Frequentist statistics

A particle physics experiment is a repeatable procedure, and thus a frequentist probability can be constructed to describe its outcomes

A scientific theory is <u>not</u> a repeatable procedure, and cannot be assigned a probability: there is no such thing as "the probability that my theory is true"

Idea #2:"Epistemic" uncertainty

Probability is an subjective characteristic associated with rational agents, defined by assessing the strength of belief that the agent holds in different propositions

"Bayesian" statistics

Probabilities can be attached to any proposition that an agent can believe A particle physics experiment generates observable events about which a rational agent might hold beliefs

A scientific theory contains a set of propositions about which a rational agent might hold beliefs

1.2 Introducing Bayes rule

Roll two dice...

Thirty six possible cases

Three cases where the dice add up to 4

All 36 cases organised by outcome

A:"at least one die has a value of 2"

$$P(A) = \frac{11}{36} = .31$$

B:"the total is at least six"

$$P(B) = \frac{26}{36} = .72$$

= 26/36

Probability that the total is at least 6

P(B)

 (\mathbf{I}) = 6/26= 26/36Probability that at least one die has a Probability that the total is at least 6 2 given that the total is at least 6 P(B) = P(A|B)P(A)Probability that at least one die has a 2 = 11/36

= 26/36Probability that the total is at least 6 P(A|B)P(B|A)P(A)Probability that the total is at least 6 given that at least one die has a 2 = 6/11 (\bullet) (\bullet)

= 6/26

Probability that at least one die has a 2 given that the total is at least 6

Probability that at least one die has a 2

Let's check that:

Let's check that:

I.3 Bayesian reasoning

Bayes' rule is a mathematical fact that probabilities must obey

Bayesian reasoning happens when we combine this mathematical rule with epistemic probability

For example...

h = A hypothesis about the world

d = Some observable data

How strongly should I believe ... given that I have observed these data?

h|d

The **posterior probability** that my hypothesis is true given that I have observed these data...

$$P(h|d) = rac{P(d|h) imes P(h)}{P(d)}$$

The **prior probability** that I assigned to this hypothesis before observing the data

$$P(h|d) = \frac{P(d|h) \times P(h)}{P(d)}$$

The <u>likelihood</u> that I would have observed these data if the hypothesis is true

$$P(h|d) = rac{P(d|h) imes P(h)}{P(d)}$$

 $P(h|d) = \frac{P(d|h) \times P(h)}{P(d)}$

The "marginal" probability of observing these particular data (more on this shortly)
Belief revision!

P(d) : discussed later

1.4 Example of Bayesian reasoning

Many possibilities

dropped a wine glass

broke a window

psychic explosion

earthquake

a wizard did it

etc...

Let's compare two of them

I dropped a wine glass

Kids broke the window

"Prior odds"

 $\frac{P(h_1)}{P(h_2)}$

= 0.1

Before learning anything else I think "wine glass dropping" is 10 times more plausible than "broken window"

Some data

There is a cricket ball next to the broken glass

Likelihood of the data

When I drop a wine glass...

... It's very unlikely that I just happen to do so right next to a cricket ball

P(d|h) = 0.001

Likelihood of the data

When the kids break a window...

... It's not at all uncommon for a cricket ball to end up near the glass

P(d|h) = 0.15

Bayes factor

(a.k.a. likelihood ratio)

I think it is 150 times more likely that I would find a cricket ball when a window breaks than when a wine glass is broken

Posterior odds

 $\frac{P(h_1|d)}{P(h_2|d)} = \frac{P(d|h_1)}{P(d|h_2)} \times \frac{P(h_1)}{P(h_2)}$

Posterior odds = 15

Likelihood ratio = 150

Prior odds = .

In light of the evidence, I now think the windowbreaking hypothesis is 15 times more likely than the wine-glass hypothesis

1.5 Bayesian hypothesis testing

Is this roulette wheel unbalanced?

We're ignoring the zero

<u>Null model,</u>

The roulette wheel has an equal probability of producing red and black

 h_0

<u>Null model,</u>

The roulette wheel has an equal probability of producing red and black

 h_0

<u>Alternative model</u>, h_1

The roulette wheel has a bias, but we don't know what it is

Let's pretend that there's no such thing as "continuous numbers", and act as if the only possible values for P(red) are 0, 0.1, 0.2, ..., 1.0 ©

Likelihoods ... the probability of the data given every possible value of P(red)

The null hypothesis assigns prior probability 0 to the possibility that P(red) = 0.8 so even though it assigns highest likelihood to the observed data

The null hypothesis assigns prior probability I to the possibility that $P(red) = 0.5 \dots$... so even though it assigns a pretty small likelihood to the observed data

DataModels8 red \swarrow Null model h_0 Bayes factorThe roulette wheel has
an equal probability of
producing red and black $P(d|h_0)$... evidence

<u>Alternative model</u> h_1

2 black

The roulette wheel has a bias, but we don't know what it is ... evidence of about 2:1 in favour of the alternative

 $P(d|h_1)$

 $BF_{10} = \frac{P(d|h_1)}{P(d|h_0)} = \frac{\sum_{\theta} P(d|\theta) \times P(\theta|h_0)}{\sum_{\theta} P(d|\theta) \times P(\theta|h_1)} = 1.87$

2.1 Just another stats package https://jasp-stats.org

Home - JASP - Free Statistics: ×

÷ 🖬 🖬 🗄

GETTING STARTED | ADVISORY BOARD | SPONSORS | ABOUT | FAQ | NEWSLETTER | CONTACT

JASP DOWNLOAD WORKSHOPS | VIDEOS | TEACHING | BLOO HOME A Fresh Way to terms 1. 14. 100 近 % 4 **Do Statistics** framework (1) First and Pentalish characterization (sector) and in providing and 81.1238 -14 Francis Saluates, 6.4 - . Proje . -Download E-10.44 G-14-180 In section at a 8.41 a free takes Instantial Autority or Train sectors 10 the state of the s -0.04 Non-pile perginate p. 7 11.4 0.8.1.2 ** Bris print services 5 1 1000 **NEW RELEASE EPS** format -

Ũ

Illustrating the JASP workflow

<u>What?</u>

open a CSV file

descriptive statisitics

run a frequentist ANOVA

save data and results to JASP file

Where?

File > Open

Common > Descriptives

Common > ANOVA > ANOVA

File > Save As

Here's a real data set with many variables!

	Α		С.	0	ε.		6		1	T.	×	1	M	N	0		Q.	
i id	1	49	gender	frequency	sampling	per_smalthir p	en_la/geb/r ge	Lunation per	Jurgeres ge	n_umalims gen.	largente	meangen	smallworld	largreeorid	property	category	condition	umalprop
	1	. 2	1 female	amaliworld	property	10	4		1	- 4	1	4.66666667	property	NA	smallworld	NA	amaliworidproperty	yes .
F	1	15	6 female	largeworld	property		- 40	4	3	5	2	4.833333333	NA	property	largaworld	NA	largeworldproperty	ne
6	. 1	25	o temale	largeworld	category		4			4	3	4.333333333	NA	category	NA	largeworld	Targeworldcategory	ne
1	4	11	6 male	largeworld	property		3	5	2	5	- 2	4.333333333	NA	property	largeworld.	NA	largeworkleroperty	ne
6	5	- 21	1 female	smallworld	sategory	3	5		9	4	- 7		category	NA	NA	smallworld	smaflworldcategory	ne
7	6	- 80	1 Semale	largeworld	property		3.	.5	5	5	5	5.16666667	NA	property	targeworld	NA	largeworldproperty	ne
1	7	10	1 female	amaliworid	category	30	5	5	1	5	5	5.16666667	category	NA .	NA	smallworld	smallworldcategory	ing .
• 1		. 24	4 female	amaliworld	property	30	5	5	1	10	10	6.633333333	property	NA	smallworld	NA	smallworldproperty	yes .
0	. 9	. 15	S female .	smallworld	property		2	2	2	- 2	2	3.16666667	property.	NA.	smallworld	545	smallworldproperty	ALC: NO
1	10	25	0 male	largeworld	property		5	2	2	4	3	4	NA	property	largeworld	NA	largeworldproperty	ne
a	13	2	1 female	smalheorid	category	30	30	5	6	1	- 6	5.66666667	category	NA	NA	smalhaorid	smallworldcategory	ne
3	12	- 25	0 female	smaflworld	sategory.		5	4		- 5	5	5.5	category	NA	NA.	smailworld	smaflworldcategory	ne
4	13		b male	amalworld	property	10	2	2	1	- 2	1	i	рюрета	NA	smailworld	NA .	amaliworldproperty	yes
5	14	13	9 female	largeworld.	property	30			1		1	4.833333333	NA	property	largeworld	NA .	largeworldproperty	ne
6	16	- 2	1 male	amaliworld	cattegory		3	3	3	. 4	1	3.83333333	category	NA	NA	amailworld	smallworldcategory	ne
P	18	- 2	4 female	smallworld	callegory		6		3	3	3	4.5	category	NA	944	smailworld	smallworldcategory	ne
8	19	- 27	0 male	smalworld	category		4	2	2	2		85	salegory	NA	NA	smallworld	smallworldcategory	ne
19	20	25	o male	smallworld	property	30	2	.4	4	- 4	4	5.5	property	NA	smallworld	NA	smaltworldproperty	yes
10	21	- 25	1 male	smaflworld	ргоретту	30	5	5	5	5	- 5	5.83333333	рюрету	NA	smailworld	NA	smaflworldproperty	yes
11	15	2	1 female	amailworld	category	10	5	1	2	- 2	- 2	3.66666667	category	NA	NA	amallworld	analworldcategory	na
12	26	15	9 male	imprevortd.	category			2	5	2	2	4.66566667	NA	category	844	Ingreiorid	largeworldcategory	no
18	22	15	5 male	amallworld	property	30	7	. 7		3	3		property	NA	smailworld	NA	smallworkbroperty	988
14	29	- 25	1 female	largeworld	callegory	10		- 4	4	5	5	6.16666667	NA	category	NA	largeworld	largeworldcategory	ne
6	30	- 27	1 male	largeworld	property	30	- 5	2	1	7	1	4.5	NA	property	largeworld	NA	largeworldproperty	ne
16	30	- 21	0. female	smallworld	property	30	5	2	2	- 2	- 2	3.83333333	property	NA	smallworld	NA	smaflworldproperty	yes.
19	33	11	6 female	smaflworld	ргоренту		- 6	- 4	4	- 4	- 4	5	property	NA	smailworld	NA	smallworldproperty	996
16	34	15	9 Semale	analworld	property		2	3	3	3	3	3.80103103	property	NA	smailworld	NA .	amailworldproperty	yes
8	35	. 2	0 male	amaliworld	property	30	9	2	3	2	2	4.66666667	property.	NA	smallworld	NA	smallworldproperty	988
0	36	- 2	5 female	largeworld	property		3	3	1		1	3.10303333	NA	property	largeworld	NA.	largeworldproperty	ne
0.	37	18	5 female	smallworld	category	10	7	2	2	4	2	4.5	sategory	NA	NA	smallworld	smallworldcategory	ne
0	38	- 27	0 male	smallworld	property	30		- 2	2:	- 2	3	4 33 333 333	рюрети	NA	snalworld	NA	smallworldproperty	145
0	39	- 25	o female	largeworld	category		5	- 5	5	5	5	5.66666667	NA	category	NA	largeworld	largeworldcategory	10
4	40	2	1 Sentale	amafworld	property	9		7	2	. 8	2	5.33333333	ргорету	NA	smailworld	NA	smallworldproperty	985
4	42	15	Fimale .	smallworld	category	10		7	6		7	7.5	category	NA	NA	amailworld	smallworldcategory	na
6	43	2	1 female	largeworld	category		5	3	6	- 4	6	5.83333333	NA	category	NA	largeworld	largeworldcategory	ne
17	-64	15	9 male	smallworld	property	6	5	3	3	3	4	14	property	NA	smailworld	NA	smallworldproperty	wes .

JASP isn't (currently?) good for computing new variables, so it's best to do that in Excel or whatever you prefer

tutedataall.xlsx

A	В	с	D
id	frequency	sampling	meangen
1	smallworld	property	4.67
2	largeworld	property	4.83
3	largeworld	category	4.33
4	largeworld	property	4.33
5	smallworld	category	6.00
6	largeworld	property	5.17
7	smallworld	category	5.17
8	smallworld	property	6.83
9	smallworld	property	3.17
10	largeworld	property	4.00
11	smallworld	category	5.67
12	smallworld	category	5.50
13	smallworld	property	3.00
14	largeworld	property	4.83
16	smallworld	category	3.83
18	smallworld	category	4.50
19	smallworld	category	3.50
20	smallworld	property	5.50

For simplicity I'll use small CSV files with only the relevant variables

tutedata l.csv

File > Open

Common

• •					futedata_y1
		Common			HE
1	h.	<u>l∓</u> .* ™min	ANDVA Begreen	r Hanna	Tastar *
	5.10	# frequency	a samping	S nearger	
1	1	smallworld	property	4.66667	Vesselle
1	2	langeworld	property	4.63333	JASP
3	3	langeworld	category	4.33353	Welcome to JASP
4	4	langeworld	property	4.33333	Welcome to shar
4	5	smallworld	category	6	A Fresh Way to Do Statistics: Free, Friendly, and Inclusive
	6	largeworld	property	5.19667	
7	7	smallworld	category	6.10667	
1	8	smallworld	property	6.83333	Free: JASP is an open-source project with structural support
	9	smallworld	property	3.16667	from the University of Amsterdam.
10	10	largeworld	property	4	 Friendly: JASP has an intuitive interface that was designed w the user in mind
- 11	11	smallworld	category	5.66667	Instructure and
12	12	smallworld	category	5.5	their classical and Bayesian manifestations.
13	13	smallworkd	property	3	
14	14	largeworld	property	4.83333	So open a data file and take JASP for a spin!
15	18	smallworld	category	3.83333	
16	18	smallworld	category	4.8	
12	19	smallworld	category	3.6	
18	20	smallworld	Locoperty.	5.5	Double-click to edit data

Common > Descriptives

Common		· 😥 · 📑	e ⊕'						1
		id frequency sampling meangen	OK .	Results Descriptiv	es				
					id	frequency	sampling	meangen	
Display frequency tab	les (nominal a	nd ontinal variables)		Valid Missing Mean Sol, Deviation Minimum	286 0 173.0 99.19 1.000	286 0	286 0	286 0 4.917 1.152 2.333	
 Plots Statistics 				Note: Not all val	ues are av	uitable for Nov	ninal Text var	lables	

Common > ANOVA

					tutedata_s1*	
		Common				19
1	h.	L + + *	AND/A Bayes	Net Preparate	Anter *	
	5.8	A trequero	ANOVA Repeated Measu	ures ANOVA	Results	
1	2	langeworld	Bayesian ANOV	A		
3	3	langeworld	Bayesian Repeat Bayesian ANCO	ted Measures ANOVA VA		
4	4	largeworld	property	4.33333	e	
4	5	smallworld	category	6		
	6	largeworld	property	5.19667		
7	7	smallworld	category	0.10667		
	8	smallworld	property	6.83333		
	9	smallworld	property	3.16667		
10	10	largeworld	property	4		
- 91	π	smallworld	category	5.66667		
12	12	smallworld	category	5.5		
13	13	smallworld	property	3		
14	14	largeworld	property	4.83333		
15	18	smallworld	category	3.83333		
15	18	smaltworld	category	4.8		
12	19	smallworld	category	3.6		
18	20	smaltworld		8.5		

Common > ANOVA > ANOVA

		Common	S 7255 20	16.2			1			
1	μľ.	T-Treats AND	A Represent Frequencies							
	1.10	# trequency	Nid		Dependent Variable	ок	Results			
1	1	smallworld	frequency		Statistics and 🙀		Nesures			
2	2	langeworld	S meangen		Fixed Factors		ANOVA			
3	3	langeworld								
4	4	largeworld					ANOVA			
1	5	smallworld			Television of the second s		Cases Sum of Squares of Mean Sc			
	6	largeworld			WLS Weights		Note: Type III Sum of Squares			
7	7	smallworld								
	8	smallworld	+ Model							
	9	smallworld	+ Assumption Checks	10 C						
10	10	largeworld	 Contrasts 							
91	π	smallworld	Post Hoc Tests							
12	12	smallworld	 Descriptives Plots 							
13	13	smallworld	 Additional Options 							
14	14	largeworld								
15	18	smallworld								
16	18	smallworld								
12	19	smallworld								

Common > ANOVA > ANOVA

		Common					E
1	h.	T-Texts AND	a bayranar Parasarca				
+	1	Imagency amaliworld	N Id	Dependent Variable	Results		
2	2 3	langeworld		Fixed Factors	ANOVA		
4	4	langeworld			ANOVA - mitangen Cases	Sum of Squarm	đ
	6	largeworld		WLS Weights	frequency sampling	3.947 55.762	1
7	7	smallworld			Residual	313.523	282
*	8	smallworld	* Model		Note: Type III Sum of Sea	ares	
۰.	9	smallworld	+ Assumption Checks				
10	10	largeworld	 Contrasts 				
91	Π	smallworld	Post Hoc Tests				
12	12	smallworld	 Descriptives Plots 				
13	13	smallworkd	 Additional Options 				
14	14	largeworld					
15	18	smallworld					
16	18	smaltworld					
12	19	smallworld					

Common > ANOVA > ANOVA > Descriptive Plots

1		Common			22			E
1	ht.	1-7eets - 121	A Represent Frequencias	÷.				
1 2 3 4 5 4	* id 1 2 3 4 5	Ingreated and a smallworld angreated a smallworld angreated a smallworld angreated a smallworld analyzed a smallworld and a smallworld a smallworld and a small	Model Assumption Checks Contrasts Post Hoc Tests Descriptives Plots Factors Tequency	1.	CK Harizontal axis	Results ANOVA ANOVA ANOVA - meangen Cases Sum of Squares frequency 3.547		
0 7 8 9 10 11	7 8 9 10 11	smallworld smallworld smallworld smallworld largeworld smallworld	a sampling		Separate lines Separate plots	sampling frequency + sampling Residual Note: Type III Sum of Sign	55.762 5.429 313.523 arrs	282
12 13 14 15 15	12 13 14 16 18 19	smallworld smallworld largeworld smallworld smallworld smallworld	Display Error bars displaying Confidence interval interval 95 % Standard error					

Common > ANOVA > ANOVA > Descriptive Plots

1		Common						1
1	ht.	Turnets AND	A Represent Frequencies	1				
	1.10	A frequency	+ Model		ANOVA			
1	1	smallworld	* Assumption Charles		10 200			
2	2	langeworld	 Contracts 			ANOVA - meangen		
3	3	langeworld	 Boat loost Teatra 			Cases	Sure of Squares	- 41
4	4	langeworld	· Post Fact reads			frequency	3.947	
4	5	smallworld	Earthur .		Manufacture and a	sampling frequency + sampling	55.762	
	6	lanaeworld	recors	1	A frequency	Residual	313.525	-28
9	-	amaflasteld		1		Note. Type III Sum of Sp	w#193	
-	2	ananyong			Separate lines			
÷	0	smalworld		1.1	& sampling	Descriptives		
۰.	9	smallworld	e					
10	10	largeworld			Separate plots	Descriptives Plot		
91	π	smallworld				6-7		
12	12	smallworld	-					
13	13	smallworld	Energy Dara disclosion				1	1
14	14	largeworld	O Confidence interval			5	1	1
15	18	smallworld	interval 95 N		S		T	
16	18	smallworld	Standard error			E	- /	-1
12	19	smallworld						
Common

-		Common								
1	ht.	T-Tests	ANCOLA Regress	r Peparcies	A.					
	5.8	# frequency	a samping	S nearger	ANOVA *					
۴.	1	smallworld	property	4.06667						
2	2	langeworld	property	4.63335	ANOVA - meangen	10000000000000	5.71		- 23	
3	3	langeworld	category	4.33353	Casets	Sum of Squares	at	Mean Square		9
4	4	largeworld	property	4.33335	frequency sampling	3.947 55.762	1	3.947	3.551 50.156	0.061
\$	5	smallworld	category	6	frequency + sampling	5.429	1	5.429	4.884	0.028
	6	largeworld	property	5.16667	Acce, Type II Sum of Squares					
7	7	smallworld	category	6.10667	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2/00				
	8	smallworld	property	6.83333	Descriptives *					
	9	smallworld	property	3.16667	Descriptions Plot 3					
10	10	largeworld	property	4		8				
11	π	smallworld	category	5.60667	67			sample		
12	12	smallworld	category	5.5	1	-	т	O cate	gory	
0	13	smallworld	property	3	5		-	- 104	- 4	
14	14	largeworld	property	4.83333	- Build		1			
15	18	smallworld	category	3.83333	19m		-			
16	18	smaltworld	category	4.8	852	T	- <u>+</u>			
12	19	smallworld	category	3.6		-				
18	20	smallworld	property	5.5	4.5	-				
					Large Large	INCOME SI	The large of the			

Common

		Common									E
1	<u>hr</u>	L	ANCON Regress	r treation	<u>*</u>						
	5.8	# frequency	analing 💧	S meanger	Sequency sampling	1.947	1	3.947	3.551	0.061	
1	1	smallworld	property	4.66667	frequency + sampling	5.429	î	5.429	4.884	0.028	
2	2	langeworld	property	4.63335	Residual	313.523	292	1.112			
3	3	langeworld	category	4.33333	Mote. Type III Sum of Squares						
4	4	largeworld	property	4.33333							
1	5	smallworld	category	6	Colorer						
	6	largeworld	property	5.19667	It Come						
7	7	smallworld	category	6.16667	in copy						
	8	smallworld	property	6.63333	ALCO NOT		-	sample O cat	ngi Holony		
	9	smallworld	property	3.16667			1	• pro	perty		
10	10	largeworld	property	4	6 L		I				
91	π	smallworld	category	5.60667	Ee		Τ				
12	12	smallworld	category	5.5	E	/	1				
13	13	smallworld	property	3	I	/					
14	14	largeworld	property	4.83333	I L _k		-				
15	18	smallworld	category	3.83333	largewo	nd N	thorefism.				
16	18	smallworld	category	4.8		frequency					
17		amplement		4.6							

-

Common

File > Save As

		myPa	stAnalysis	
Comm	non	54.97		E
Open Seve Seve As Export Results Export Data Sync Data Close	Computer	Recent Folders	Save As: myfinstAnalysis.losp Tegs: Weee: pop Cancel	

File > Export Results

2.2 Bayesian ANOVA

Common > ANOVA > Bayesian ANOVA

Common > ANOVA > Bayesian ANOVA

	•						tutedata_v1*	6					
7		Common											E
1	h	1.14	- IT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Nation Frequencies	Anter *							
	14	all requercy	& anying	1	ANOVA								
1	1	emailworld	property	4.666									
2	2	largeworld	property	4.833	ANOVA - meangen								
3	3	largeworld	category	4.333	Cases	Sum of S	quares s	ar M	ean Square	1	P		
4	4	largeworld	property	4.333	frequency		1.947	1	3,947	3.551	0.061		
6	5	smailworld	category	6	frequency + sampling	1	5.429	î	5.429	4.884	0.028		
	6	largeworld	property	5.1064	Residual	31	1.523 2	282	1.112	0.000			
7	7	smailworld	category	5.1061	Noor, Type III Sum of Squ	APAGE .							
		smallworld	property	6.033									
	0	amailworld	oroperty	3.1667	- Resident Allender								1
-	-	Internet	annually.	4	Bayesian ANOV	A							
-	~	angenore.	Property.		Model Comparison - mes	angen							
-		smanworld	category	3.000	Ma	dels.		(M)	PONTIdutal	10 ¹ M	8F10	error N	
12	12	smallworld	category	9.9	Null model			0.200	1.195e -9	4.780e -9	1.000	-	
13	13	smallworld	property	3	frequency			0.200	3.823e-10	1.529e -9	0.320	1.317s -5 2.988s -14	
14	54	largeworld	property	4.833	frequency + sampling			0.200	0.255	1.367	2.132e+8	0.849	
15	56	smallworld	category	3.833	frequency + sampling	+ frequency	+ sampling	0.200	0.436	3.089	3.6476+8	1.130	
10	18	amailworld	category	4.5									
17	19	smallworld	category	3.5	Analysis of Effects - mea	ngen							
18	20	smailworld	property	5.5	Effects	Planci	Ponci data)	Pirela	sian				
19	21	smallworld	property	5.833	frequency sampling frequency + sampling	0.600 0.600 0.200	0.691 1.000 0.436	4.227e	488 1+8 089				

Common > ANOVA > Bayesian ANOVA

Model Comparison - meangen

Models	P(M)	P(M data)	BFM	8F10	error %
Null model	0.200	1.195e-9	4.780e-9	1.000	
frequency	0.200	3.823e-10	1.529e-9	0.320	1.317e -5
sampling	0.200	0.309	1.792	2.590e+8	2.988e-14
frequency + sampling	0.200	0.255	1.367	2.132e+8	0.849
frequency + sampling + frequency * sampling	0.200	0.436	3.089	3.647e+8	1.130

Analysis of Effects - meangen

Effects	P(incl)	P(incl data)	BFInclusion
frequency	0.600	0.691	1.488
sampling	0.600	1.000	4.227e+8
frequency * sampling	0.200	0.436	3.089

2.3 Bayesian t-test

Planned analysis #1:

Null effect under category sampling?

id	frequency	sampling	meangen	smallworld	largeworld	property	category
1	smallworld	property	4.67	property		smallworld	
2	largeworld	property	4.83		property	largeworld	
3	largeworld	category	4.33		category		largeworld
4	largeworld	property	4.33		property	largeworld	
5	smallworld	category	6.00	category			smallworld
6	largeworld	property	5.17		property	largeworld	
7	smallworld	category	5.17	category			smallworld
8	smallworld	property	6.83	property		smallworld	
9	smallworld	property	3.17	property		smallworld	
10	largeworld	property	4.00		property	largeworld	
11	smallworld	category	5.67	category			smallworld
12	smallworld	category	5.50	category			smallworld
13	smallworld	property	3.00	property		smallworld	

Common > T-Test > Bayesian Independent Samples T-Test

Common > T-Test > Bayesian Independent Samples T-Test

Bayesian independent Samples 1–1es	les T-Test	ent Sampl	epend	an Ind	Bayesia
------------------------------------	------------	-----------	-------	--------	---------

	BF01	error %
meangen	5.305	9.941e-7

Planned analysis #2:

large < small under property sampling

id	frequency	sampling	meangen	smallworld	largeworld	property	category
1	smallworld	property	4.67	property		smallworld	
2	largeworld	property	4.83		property	largeworld	
3	largeworld	category	4.33		category		largeworld
4	largeworld	property	4.33		property	largeworld	
5	smallworld	category	6.00	category			smallworld
6	largeworld	property	5.17	2011-0021	property	largeworld	
7	smallworld	category	5.17	category			smallworld
8	smallworld	property	6.83	property		smallworld	
9	smallworld	property	3.17	property		smallworld	
10	largeworld	property	4.00		property	largeworld	
11	smallworld	category	5.67	category			smallworld
12	smallworld	category	5.50	category			smallworld
13	smallworld	property	3.00	property		smallworld	

Common > T-Test > Bayesian Independent Samples T-Test

Common > T-Test > Bayesian Independent Samples T-Test

Bayesian Indep	endent Sample	es T-Test 🔻
	BF ₋₀	error %
meangen	22.49	~3.662e -6
Note, For all te	sts the altern	ative hypothesis

specifies that group largeworld is less than group smallworld.

2.4 Bayesian regression

id	age	small	property	female	meangen
1	21	1	1	1	4.67
2	19	0	1	1	4.83
3	20	0	0	1	4.33
4	19	0	1	0	4.33
5	21	1	0	1	6.00
6	31	0	1	1	5.17
7	21	1	0	1	5.17
8	24	1	1	1	6.83
9	19	1	1	1	3.17
10	20	0	1	0	4.00
11	21	1	0	1	5.67
12	20	1	0	1	5.50
13	20	1	1	0	3.00
14	19	0	1	1	4.83
16	21	1	0	0	3.83
18	24	1	0	1	4.50
19	20	1	0	0	3.50
20	20	1	1	0	5.50

tutedata5.csv

Common > Regression > Bayesian Linear Regression

Common > Regression > Bayesian Linear Regression

Models	P(M)	P(M data)	BFM	BF10	error %
property	0.063	0.326	7.243	1.000	
small + property	0.063	0.234	4.572	0.717	0.012
age + small + property	0.063	0.151	2.663	0.463	0.012
age + property	0.063	0.141	2.457	0.432	0.012
property + female	0.063	0.050	0.791	0.154	0.013
small + property + female	0.063	0.043	0.678	0.133	0.012
age + small + property + female	0.063	0.030	0.471	0.093	0.013
age + property + female	0.063	0.025	0.392	0.078	0.012
Null model	0.063	6.055e -10	9.083e-9	1.860e-9	0.012
age	0.063	3.438e -10	5.157e-9	1.056e-9	0.012
small	0.063	1.745e -10	2.617e-9	5.358e-10	0.012
age + small	0.063	1.697e -10	2.546e-9	5.211e-10	0.013
female	0.063	1.023e -10	1.535e-9	3.142e-10	0.012
age + female	0.063	7.768e-11	1.165e-9	2.385e-10	0.014
age + small + female	0.063	4.557e-11	6.835e-10	1.399e-10	0.012
small + female	0.063	4.301e-11	6.451e-10	1.321e-10	0.015

Model Comparison - meangen 🔻

Common > Regression > Bayesian Linear Regression

Analysis of Effects – meangen ▼

Effects	P(incl)	P(incl data)	BFInclusion
age	0.500	0.347	0.532
small	0.500	0.458	0.845
property	0.500	1.000	6.402e+8
female	0.500	0.149	0.175

2.5 Bayesian contingency tables

id	age	small	property	female	meangen
1	21	1	1	1	4.67
2	19	0	1	1	4.83
3	20	0	0	1	4.33
4	19	0	1	0	4.33
5	21	1	0	1	6.00
6	31	0	1	1	5.17
7	21	1	0	1	5.17
8	24	1	1	1	6.83
9	19	1	1	1	3.17
10	20	0	1	0	4.00
11	21	1	0	1	5.67
12	20	1	0	1	5.50
13	20	1	1	0	3.00
14	19	0	1	1	4.83
16	21	1	0	0	3.83
18	24	1	0	1	4.50
19	20	1	0	0	3.50
20	20	1	1	0	5.50

Common > Frequencies > Bayesian Contingency Tables

Common > Frequencies > Bayesian Contingency Tables

¥	Statistics
San	npling
0	Poisson
C	Joint multinomial
C	Indep. multinomial, rows fixed
C	Indep. multinomial, columns fixed
C	Hypergeometric (2x2 only)
Hyp	oothesis
C	Group one ≠ Group two
C	Group one > Group two
0	Group one < Group two
Bay	es Factor
0	BF ₁₀
C	BF ₀₁
C	Log(BF ₁₀)

Common > Frequencies > Bayesian Contingency Tables

Bayesian Contingency Tables 🔻

	prop			
small	0	1	Total	
0	73	71	144	
1	62	78	140	
Total	135	149	284	

bayesian contingency rables rests	yesian C	ontingency	Tables	Tests
-----------------------------------	----------	------------	--------	-------

	Value
BF01 joint multinomial	2.540
N	284

2.6 Bayesian binomial test

spin	outcome
1	red
2	red
3	red
4	black
5	red
6	red
7	red
8	black
9	red
10	red

Common > Frequencies > Bayesian Binomial Test

🚴 spin	\delta outcome	ок
Test value: 0.5		
Hypothesis	Plots	
O ≠ Test value	Prior and posterior	
> Test value	Additional info	
🔘 < Test value	Sequential analysis	
Bayes Factor	Prior	
O BF10	Beta prior: parameter a	1
BF01	Beta prior: parameter b	1
Log(BF10)		

D	escriptives	Common	A Reg	vession Frequ	encies	Factor *				
	🌲 spin	eutcome		Results						
1	1	red		Results	5					
2	2	red	Bavesian Binomial Test							
3	3	red	buyesian binomiar rest							
4	4	black		Bayesian Bin	omial Test					
5	5	red			Level	Counts	Total	Proportion	BF10	
6	6	red		outcome	black	2	10	0.200	2.069	
7	7	red		Note. Propor	tions tested	o against value	E 0.5.	0.000	2.009	
8	8	black								
	9	red								
9	-									

Wait... we got 1.87 for this Bayes factor and JASP says 2.07

It's just an approximation error... if we use finer-grained approximation to "continuous numbers" we get 2.05

2.7 Beyond basics

... to be added at a later stage!

