
Bayesian data analysis using JASP

compcogscisydney.com/jasp-tute.html

Dani Navarro



Part 1: Theory

• Philosophy of probability
• Introducing Bayes rule
• Bayesian reasoning
• A simple example
• Bayesian hypothesis testing

Part 2: Practice

• Introducing JASP
• Bayesian ANOVA
• Bayesian t-test
• Bayesian regression
• Bayesian contingency tables
• Bayesian binomial test



1.1 Philosophy of probability



Idea #1: “Aleatory” processes

Probability is an objective characteristic associated with 
physical processes, defined by counting the relative frequencies 
of different kinds of events when that process is invoked



“Aleatory” processes







Frequentist statistics

Coin flipping is an 
aleatory process, and can 
be repeated as many 
times as you like

The probability of a 
head is defined as the 
long-run frequency



Frequentist statistics

A particle physics experiment is 
a repeatable procedure, and 
thus a frequentist probability 
can be constructed to describe 
its outcomes

A scientific theory is not a 
repeatable procedure, and 
cannot be assigned a 
probability: there is no such 
thing as “the probability that my 
theory is true”



Idea #2: “Epistemic” uncertainty

?

Probability is an subjective characteristic 
associated with rational agents, defined by 
assessing the strength of belief that the agent 
holds in different propositions

? ?
?



“Bayesian” statistics

A particle physics experiment 
generates observable events 
about which a rational agent 
might hold beliefs

A scientific theory contains a 
set of propositions about which 
a rational agent might hold 
beliefs

Probabilities can be 
attached to any 
proposition that an 
agent can believe



1.2 Introducing Bayes rule



Roll two dice…



Thirty six possible cases 



Three cases where 
the dice add up to 4



The three cases where 
the result adds up to 4

All 36 cases organised by outcome



Roll 2 3 4 5 6 7 8 9 10 11 12

N 1 2 3 4 5 6 5 4 3 2 1



Roll 2 3 4 5 6 7 8 9 10 11 12

N 1 2 3 4 5 6 5 4 3 2 1

Prob .028 .056 .083 .111 .139 .167 .139 .111 .083 .056 .028

Probability = 3/36 = .083



A: “at least one die has a value of 2”

P (A) =
11

36
= .31



B: “the total is at least six”

P (B) =
26

36
= .72



P (B|A) =
P (B)⇥ P (A|B)

P (A)

Probability that the total is at least 6

= 26/36



P (B|A) =
P (B)⇥ P (A|B)

P (A)

Probability that the total is at least 6

= 26/36

Probability that at least one die has a 2

= 11/36



P (B|A) =
P (B)⇥ P (A|B)

P (A)

Probability that the total is at least 6

= 26/36
= 6/26

Probability that at least one die has a 
2 given that the total is at least 6

Probability that at least one die has a 2

= 11/36



P (B|A) =
P (B)⇥ P (A|B)

P (A)

= 6/11

Probability that the total is at least 6 
given that at least one die has a 2

Probability that the total is at least 6 Probability that at least one die has a 
2 given that the total is at least 6

Probability that at least one die has a 2

= 26/36
= 6/26

= 11/36



P (B|A) =
P (B)⇥ P (A|B)

P (A)

Probability that the total is at least 6 
given that at least one die has a 2

Probability that the total is at least 6 Probability that at least one die has a 
2 given that the total is at least 6

Probability that at least one die has a 2

= 26/36
= 6/26

= 11/36= 6/11



Let’s check that:

26

36
⇥ 6

26
÷ 11

36
=

26

36
⇥ 6

26
⇥ 36

11
=

6

11

P (B|A)

P (B) P (A)

P (A|B)



Let’s check that:

26

36
⇥ 6

26
÷ 11

36
=

26

36
⇥ 6

26
⇥ 36

11
=

6

11

P (B|A)

P (B) P (A)

P (A|B)



1.3 Bayesian reasoning



P (B|A) =
P (B)⇥ P (A|B)

P (A)

6/11

26/36 6/26

11/36

Bayes’ rule is a mathematical fact 
that probabilities must obey



P (B|A) =
P (B)⇥ P (A|B)

P (A)

Bayesian reasoning happens when we 
combine this mathematical rule with 

epistemic probability



For example…

h = A hypothesis about the world

d = Some observable data



… given that I have 
observed these data?

How strongly should I believe 
in this hypothesis…



P (h|d) = P (d|h)⇥ P (h)

P (d)

The posterior probability that my 
hypothesis is true given that I have 
observed these data…

h|d



P (h|d) = P (d|h)⇥ P (h)

P (d)

The prior probability that I 
assigned to this hypothesis 
before observing the data

h



P (h|d) = P (d|h)⇥ P (h)

P (d)

The likelihood that I would have observed 
these data if the hypothesis is true

d|h



P (h|d) = P (d|h)⇥ P (h)

P (d)

The “marginal” probability of 
observing these particular 
data (more on this shortly)

d



Prior beliefs Posterior beliefs

Data

Belief revision!



P(h) : the prior probability
that h is true

P(d) : discussed later

P(d|h) : the likelihood of 
observing d if h is true

P(h|d) : the posterior 
probability that h is true



1.4 Example of Bayesian reasoning



Many possibilities

dropped a wine glass broke a window psychic explosion

earthquake a wizard did it

etc…



Let’s compare two of them

I dropped a wine glass Kids broke the window



“Prior odds”

P (h1)

P (h2)
= = 0.1

Before learning anything 
else I think “wine glass 
dropping” is 10 times 
more plausible than 
“broken window”



Some data

There is a cricket ball 
next to the broken glass



Likelihood of the data

When I drop a wine glass…

… It’s very unlikely that I 
just happen to do so right 
next to a cricket ball

P(d|h) = 0.001



Likelihood of the data

When the kids break a window…

… It’s not at all uncommon 
for a cricket ball to end up 
near the glass

P(d|h) = 0.15



Bayes factor 
(a.k.a. likelihood ratio)

P (d|h1)

P (d|h2)
= = 150

0.15

0.001
=

I think it is 150 times more likely that I 
would find a cricket ball when a window 
breaks than when a wine glass is broken



Posterior odds

P (h1|d)
P (h2|d)

=
P (d|h1)

P (d|h2)
⇥ P (h1)

P (h2)
Posterior odds Likelihood ratio Prior odds

= 150 = .1= 15

In light of the evidence, I 
now think the window-
breaking hypothesis is 15 
times more likely than the 
wine-glass hypothesis



1.5 Bayesian hypothesis testing



8 red

2 black

Is this roulette 
wheel unbalanced?

We’re ignoring the zero



8 red

2 black

Null model,  

The roulette wheel has an 
equal probability of producing 
red and black

h0



8 red

2 black

Null model,  

The roulette wheel has an 
equal probability of producing 
red and black

Alternative model,   

The roulette wheel has a 
bias, but we don’t know 
what it is 

h0

h1



The null model 
places all its 
prior belief on 
P(red) = .5

0 10.5

P(red)

P (✓|h0)

Let’s pretend that there’s no such thing as 
“continuous numbers”, and act as if the only 
possible values for P(red) are 0, 0.1, 0.2, …, 1.0   J

We think of each 
hypothesis as a 
Bayesian who holds 
prior beliefs that map 
onto the hypothesis 

Null hypothesis



The null model 
places all its 
prior belief on 
P(red) = .5

0 10.5

P(red)

P (✓|h0)

The alternative model 
spreads its prior belief 
equally across all possibilities

0 10.5

P(red)

P (✓|h1)

Null hypothesis Alternative hypothesis



Likelihoods … the probability of the 
data given every possible value of P(red)

0 10.8

P(red)

P (d|✓)



Null

⇥ =

Prior Likelihood

The null hypothesis assigns 
prior probability 0 to the 
possibility that P(red) = 0.8 …

… so even though it 
assigns highest likelihood 
to the observed data ….

… it contributes nothing to 
the a priori “prediction” 
made by the null

P (d|✓)P (✓|h)

h0



Null

⇥ =

Prior Likelihood

The null hypothesis assigns 
prior probability 1 to the 
possibility that P(red) = 0.5 …

… so even though it 
assigns a pretty small 
likelihood to the 
observed data ….

… it is the only contributor to the 
prediction made by this model

P (d|✓)P (✓|h)

h0



Null

⇥ =

Prior Likelihood

Summing these values gives 
the marginal probability 
of the data under the null 
hypothesis... 

i.e., how likely did the null 
model “think” we were to 
observe this specific 
pattern of data?



Null

Alternative

⇥

⇥

=

=

Prior Likelihood Marginal probability of 
the data according to 
both modelsP (d|✓)P (✓|h)

h0

h1

P (d|h0)

P (d|h1)



Bayes factor

P (d|h0)

P (d|h1)

BF10 =
P (d|h1)

P (d|h0)
=

P
✓ P (d|✓)⇥ P (✓|h0)P
✓ P (d|✓)⇥ P (✓|h1)

= 1.87

8 red

2 black

Null model

The roulette wheel has 
an equal probability of 
producing red and black

Alternative model

The roulette wheel has 
a bias, but we don’t 
know what it is 

h0

h1

… evidence of 
about 2:1 in 
favour of the 
alternative

Data Models



2.1 Just another stats package
https://jasp-stats.org





Illustrating the JASP workflow

File > Openopen a CSV file
Common > Descriptives descriptive statisitics

Common > ANOVA > ANOVArun a frequentist ANOVA 

File > Save Assave data and results to JASP file

What? Where?



Here’s a real data set with many variables!

tutedataall.xlsx

JASP isn’t (currently?) good for 
computing new variables, so it’s best to 
do that in Excel or whatever you prefer



For simplicity I’ll use small 
CSV files with only the 
relevant variables

tutedata1.csv



File > Open



Common



Common > Descriptives



Common > ANOVA



Common > ANOVA > ANOVA



Common > ANOVA > ANOVA



Common > ANOVA > ANOVA > Descriptive Plots



Common > ANOVA > ANOVA > Descriptive Plots



Common



Common



Common



File > Save As



File > Export Results



2.2 Bayesian ANOVA



Common > ANOVA > Bayesian ANOVA



Common > ANOVA > Bayesian ANOVA



Common > ANOVA > Bayesian ANOVA



2.3 Bayesian t-test



tutedata2.csv

Planned analysis #1: 
Null effect under category sampling?



Common > T-Test > Bayesian Independent Samples T-Test



Common > T-Test > Bayesian Independent Samples T-Test



tutedata2.csv

Planned analysis #2: 
large < small under property sampling 



Common > T-Test > Bayesian Independent Samples T-Test



Common > T-Test > Bayesian Independent Samples T-Test



2.4 Bayesian regression



tutedata5.csv



Common > Regression > Bayesian Linear Regression



Common > Regression > Bayesian Linear Regression



Common > Regression > Bayesian Linear Regression



2.5 Bayesian contingency tables



tutedata5.csv



Common > Frequencies > Bayesian Contingency Tables



Common > Frequencies > Bayesian Contingency Tables



Common > Frequencies > Bayesian Contingency Tables



2.6 Bayesian binomial test





Common > Frequencies > Bayesian Binomial Test





Alternative

⇥

⇥

=

=

Prior Likelihood
Bayes factor

Null

Wait… we got 1.87 for this 
Bayes factor and JASP says 2.07 



Alternative

⇥

⇥

=

=

Prior Likelihood
Bayes factor

Null

It’s just an approximation error… if 
we use finer-grained approximation 
to “continuous numbers” we get 2.05



2.7 Beyond basics

… to be added at a later stage!

JASP Stan … R



Done!


