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RSVP now to attend
party later

Study now for a
career later

Show up to the first
date to get invited

on a second
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How many to pursue?How many to pursue?

Pursuing too many options
consumes time, effort and other

scarce resources

The opportunity cost for
maintaining poor options

can be substantial

Yet... pursuing too few is risky...
What if the world changes?
What if your needs change?
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Vanishing options tasks
Shin & Ariely (2004)
Ejova et al (2009)
Neth et al (2014)

Other related literature
Endowment effect (Kahneman & Tversky 1979)
RL models with prospect curves (e.g., Speekenbrink &
Konstantinidis 2015)

"doors" problems
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win $2
lose $3

I've not used these machines
recently, and someone else

has taken them

I've concentrated recent
bets on these machines

win $2

win $2

lose $5



 RL approximation: options RL approximation: options
not pursued for N trials vanishnot pursued for N trials vanish

1 2 3 4 5 6 7 8

chosen viable option not chosen

someone takes
the machine

someone takes
the machine
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https://s3.amazonaws.com/media-p.slid.es/videos/902117/3Z0KabMs/vanishing_bandit_4x.mp4
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Method detailsMethod details

Task:
Six armed bandit
Horizon: 50 trials (x3)
Feedback between games

Other details:
Experiments run on Amazon Mechanical Turk
Expt 1: N = 400, Expt 2: N = 300, Pay: US$10/hr
Instructions had short "test" to check understanding

Manipulations:
Availability (const., threat)
Change (static, slow, fast)
Drift (none, biased)
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Learning curvesLearning curves

(Runaway winner effect in
Exp 2 fast change)

Good = "top 2" option
People learn quickly
Fewer good choices when:

option threat exists 
environment changes
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~ 3-4 options retained
(consistent with Ejova et al 2009)
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2. Letting go near the deadline?2. Letting go near the deadline?

Looks like people are
"clinging" to a few

suboptimal options
only to let them

expire right before
the deadline?
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Interim summaryInterim summary

There appears to be systematicity to how and when
we allow options to expire

People mostly make good choices, but it is hard in
extremely volatile environments (not surprisingly)
People do let options expire but are perhaps
reluctant: agrees with Ejova et al (2009), Neth et al
(2014), possibly also with Shin & Ariely (2004)
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Open questionsOpen questions

Do the differences in responding across volatility
levels reflect a strategy change, or the same approach
expressed differently because the environment is
different?

Is the expiry any different to what we'd expect from a
standard RL model (e.g. Kalman filter)
If there are differences, what pattern do they take?
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Ej,t−1

Kjt

Sj,t−1

Ejt

Sjt

Kalman gain influences
beliefs about expected
reward and uncertainty
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E = E + δ K r − Ejt j,t−1 jt jt ( t j,t−1)

Predicted reward
for choosing the

option

Prediction error

(only update chosen option)

Amount of learning
depends on the

Kalman gain
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E = E + δ K r − Ejt j,t−1 jt jt ( t j,t−1)

K =jt S +σ +σj,t−1 n
2

w
2

S +σj,t−1 w
2

S = (1 − δ K )(S + σ )jt jt jt j,t−1 w
2

Volatility σ  and noise σ  fixed at veridical values
Initial values E  and S  reflect diffuse prior
Model not yoked to participant: purely predictive

w n

j0 j0

KF updates
uncertainty

Gain depends
on uncertainty
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Choice probabilitiesChoice probabilities

KF model provides an
excellent account of choice

behaviour when options
do not expire

There is a systematic
difference when option

loss is a possibility 
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Options retained?Options retained?

Human decision
makers retain

more options than
the KF model
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Replicated findings from "doors" tasks in a bandit
task framework without explicit switching costs
Extension to several dynamic environments
Computational modelling to measure the shift in
decision policy when option loss exists
Attempted to quantify the loss aversion signal

Main findingsMain findings

Follow up?Follow up?

Why the "gradual rising" pattern? Hazard in the task
is abrupt (cliff) not smooth (lion). Why do people treat
a "cliff" task like a "lion" threat?

Covariates? Does anxiety play a particular role here?
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