Pragmatic reasoning during associative learning: First attempt at a Bayesian computational model

Dani Navarro

UNSW

The puzzle

A CS+ trial

The puzzle

Many CS+ trials

The puzzle

Generalisation trial

Utterly unsurprising... zero prediction error?

Add no-shock trials for a stimulus you'd never expect to produce shock anyway...

Single CS+

Single CS+
\& Distant CS-

... and expectation of shock to ambiguous items increases???

Single CS+

Modest to low expectation of shock

Single CS+
\& Distant CS-

Much HIGHER expectation of shock

Dimensional attention?

Contraction along this dimension produces more generalisation

Still a puzzle though...

The perspective from the reasoning literature

(cue blatant reuse of slides from a different talk...)

What should we do with this sample of evidence?

The problem of
 inductive generalisation

What factors shape our inductive inferences?

Similarity and typicality
of the sample

What factors shape our inductive inferences?

Reasoners consider hypotheses

The sample rules out some and not others...

small birds

Inductive generalisation is based on hypotheses consistent with the sample

Probabilistic perspective... Learning depends on sampling

Everyday reasoning about the world is

intertwined with social reasoning about other people

Illustrative example...
Inductive reasoning when a helpful teacher provides
 the data

Illustrative example...
Inductive reasoning when a helpful teacher provides

Illustrative example...
Inductive reasoning when an indifferent world provides the data

Illustrative example...
Inductive reasoning when an indifferent world

Some empirical examples:

- Ransom, Voorspoels, Perfors \& Navarro (2017): the mere suspicion of deceptive informants shapes human (and Bayesian) reasoners
- Ransom, Perfors \& Navarro (20|6): the evidentiary status of stimulus similarity is different when a human chooses examples or not
- Voorspoels, Navarro, Perfors, Storms \& Ransom (2015): ostensibly "irrelevant" negative evidence can be a powerful "hint"
- Hayes, Banner \& Navarro (2017): purely mechanistic constraints on stimulus selection influence people's willingness to generalise
- Etc.

Initial attempt at a Bayesian model

The learning problem?

Given the training data, infer the probability of shock $P(o \mid x)$ across the whole stimulus space

Associative maps as Markov random fields

Associative strength for the i-th and j-th items in the map

Associative maps as Markov random fields

Smoothness of the map at this edge is governed by lambda
$P\left(a_{i}, a_{j}\right) \propto\left(\left|a_{i}-a_{j}\right|\right)^{\lambda_{i j}}$

Associative maps as Markov random fields

They are connected because they have the same value on every stimulus dimension except dimension k, and differ only by a single unit along that dimension

Associative maps as Markov random fields

... and the pair is located either side of position v on dimension k
k

v

Associative maps as Markov random fields

Smoothness of this dimension at this location is governed by phi

Associative maps as Markov random fields

This dimensional smoothness affects the local smoothness of every relevant edge in the lattice

$$
P\left(\lambda_{i j}\right) \propto \exp \left(-\phi_{k v} \lambda_{i j}\right)
$$

Associative maps as Markov random fields

Every stimulus feature has its own dimensional representation and its own pattern of influence on the map

Associative maps as Markov random fields

The point of this representation is to allow the associative strength of each item to be influenced by all its neighbours, in a way that respects the relative homogeneity of all dimensions

Stimulus dimensions

other
dimension

Stimulus dimensions

Stimulus dimensions

We allow for the possibility of random mutations, points on the dimension where there are sharp changes in association strength

Stimulus dimensions

We allow for the possibility of random mutations, points on the dimension where there are sharp changes in association strength

$$
\begin{array}{r}
\phi_{v k}=\left\{\begin{aligned}
\phi & \text { if } \delta_{v k}=0 \\
\gamma \phi & \text { if } \delta_{v k}=1
\end{aligned}\right. \\
P\left(\delta_{v k}=1\right)=\theta_{v k} \\
P\left(\theta_{v k}\right)
\end{array} \propto 1 .
$$

Set gamma $=.5$ and $\mathrm{phi}=\mathrm{I} 5$.

This is what a sample from $P(A)$ looks like

Imposes a weak "local smoothness" constraint

Not as novel as it sounds. This is a slightly fancier version of an old idea in physics and computer science...

An associative map makes predictions about CS-US contingencies for all items

Every training trial causes learning about the presented CS, which propagates through the map (using MCMC for Bayesian updating, but whatever)

Every training trial causes learning about the presented CS, which propagates through the map (using MCMC for Bayesian updating, but whatever)

Bayes rule for this problem

$$
\begin{aligned}
P(a \mid x, o) & \propto P(x, o \mid a) P(a) \\
& =P(o \mid x, a) P(x \mid a) P(a)
\end{aligned}
$$

This is the prediction our associative map makes about the outcome when a

This is our MRF prior over possible associative maps stimulus is presented

Bayes rule for this problem

$$
\begin{aligned}
P(a \mid x, o) & \propto P(x, o \mid a) P(a) \\
& =P(o \mid x, a) P(x \mid a) P(a)
\end{aligned}
$$

What is this????

Bayes rule for this problem

$$
\begin{aligned}
P(a \mid x, o) & \propto P(x, o \mid a) P(a) \\
& =P(o \mid x, a) P(x \mid a) P(a)
\end{aligned}
$$

The sampling model provides the learner's theory of the situation ... $\mathrm{P}(\mathrm{x} \mid \mathrm{a})$ is the probability that we would encounter stimulus x if this association map is true

The learner can have many theories

I only encounter things that shock me

Stimuli appear randomly with no connection to shock

Someone is trying to teach me about shock

Someone is trying to protect me from shock

Two important cases

The world is selects the stimuli with no goal and no purpose

The stimulus selection is independent of the associative map, so...

$$
P(x \mid a) \propto 1
$$

A knowledgeable person is trying to teach me the association map

The stimulus selection is designed to be helpful. .

- Gricean maxims
- Pedagogical sampling
- Rational speech act

GOAL \# I

Teacher wishes to communicate which stimulus dimensions are relevant and which are irrelevant to the problem

Diagnostic dimension is relevant

Non diagnostic dimension is irrelevant

If the teacher successfully communicates relevance, the learner should make finer grained distinctions with respect to relevant dimensions

$$
P(\theta \mid r=0) \propto 1
$$

$$
P(\theta \mid r=1) \propto \theta
$$

Diagnostic dimension is relevant

Non diagnostic dimension is irrelevant

Higher mutation rate

GOAL \#2

Teacher wishes to select items that provide unambiguous evidence about the relevant distinction?

This pair is good?

This pair is bad?

These items have the highest average associative strength

These items have the lowest average associative strength

Learner assumes that the teacher selected CS+ probability proportional to the average associative strength of items that share the relevant value

$$
\begin{aligned}
& u_{o=1}(x \mid r)=\bar{a}(x, r) \\
& u_{o=0}(x \mid r)=1-\bar{a}(x, r)
\end{aligned}
$$

For a CS+ and CS- design, these are the best dimensional values to communicate

What behaviour do these models produce?

Weak sampling

We "hard code" a model in which nothing is deemed relevant and no communicative intentions exist

Generalisation patterns under weak sampling

What if relevance has been communicated?

We "hard code" a model in which the learner has mysteriously worked out that colour is relevant in the single and near conditions; whereas the texture type (checkered vs solid) is relevant in the far condition

Generalisation when a single relevant dimension is communicated

```
> opt$relevance_texture
    TT SZ BG CH
single 0}001
near 0}00<1
far 1 0 0 0
```


Maps learned via weak sampling

single

> opt					
relevance_weak					
	TT	SZ	BG	CH	
single	0	0	0	0	
near	0	0	0	0	
far	0	0	0	0	

single

near

near

far

far

Maps learned by communicative model

	TT	Z	BG	CH
single	0	0	1	0
near	0	0	1	0
far	1	0	0	0

single

single

near

near

far

far

Possible hints as to relevance?

```
> opt$hints
$single
\begin{tabular}{lllll} 
& 0 & 1 & 1 & 0 \\
exists & 0 & 0 & 0 & 0 \\
varies_train & 0 & 1 & 1 & 0
\end{tabular}
$near
\begin{tabular}{lrrrr} 
& TT & SZ & BG & CH \\
exists & 0 & 1 & 1 & 0 \\
varies_train & 0 & 0 & 1 & 0 \\
varies_test & 0 & 1 & 1 & 0
\end{tabular}
$far
\begin{tabular}{lrrrr} 
& TT & SZ & BG & CH \\
exists & 1 & 1 & 1 & 1 \\
varies_train & 1 & 0 & 0 & 0 \\
varies_test & 0 & 1 & 1 & 0
\end{tabular}
```

Gricean maxims suggest...
(I) The teacher should include features that are relevant
(2) The teacher should not include irrelevant features
(3) The teacher should vary relevant dimensions at training
(4) The teacher should not vary irrelevant dimensions at training
(5) The teacher should make relevant features salient
... not so sure about test trial variability, so l'm ignoring it

It works?

Posterior probability of relevance

	texture	bluegreen	checker	size
single	0	1	0	0.01
near	0	1	0	0.33
far	1	0	1	0.00

*Take this with a grain of salt.
It's pretty post hoc, but still
kind of neat I think

It works?

Posterior probability of relevance

	texture	bluegreen	checker	size
single	0	1	0	0.01
near	0	1	0	0.33
far	1	0	1	0.00

single

single

near

near

far

far

Not perfect... learning curves too shallow

Note, I haven't corrected for stimulus order info (e.g., on trial I in near and far conds half the time this item comes first, half the time the other does

Thanks!

