
Flexible experiments in the browser:
A tutorial in jsPsych and Google app engine

Dani Navarro

• What is this?
• Setting up a stand-alone experiment with jsPsych
• Deploying it to the web with Google app engine

• What is this not?
• Participant recruitment (via MTurk, Sona, etc)
• Detailed comparison to Qualtrics, Psychtoolbox, etc

• Why bother?
• Freedom: your experiment runs anywhere, for free
• Flexibility: once you’re comfortable with JS, you can

make the experiment as flexible as you like.
• … in this tutorial we cover some of this flexibility, but

you can do a lot more than this!

Motivation

The simplest model

ServerClientUser

• The code for the experiment
is hosted on the server

• The data from the
experiment is stored on the
server

• The code for the experiment is
executed on the client machine
inside the browser

• When finished, the client sends
the data to the server

The jsPsych library

http://www.jspsych.org/

• What is this?
• What the server sends to the

client is a webpage, consisting of
HTML, CSS and JavaScript (JS)

• You could write your
experiment in raw HTML/CSS/JS
but that’s tedious

• Why use jsPsych?
• jsPsych takes care of the uglier

side of JS, stores data in a nice
format, and is build specifically
for behavioural experiments

• Also it’s free

Client

Google app engine

Server

https://cloud.google.com/appengine/

• What is this?
• Google will let you host your

site on their servers almost
entirely for free

• At the end of the tutorial I’ll talk
about how to use their service

• Why use it?
• Flexibility: once you can do a

basic GAE set up, you can use
the server to manage many
participants interacting
simultaneously

Division of responsibility!

GAE

Build a simple experiment by
following the jsPsych tutorial

Use the lab “blankex” template
to add UNSW ethics, GAE
hooks, MTurk code, etc

Create a GAE project for the
experiment and push it online

http://docs.jspsych.org/tutorials/hello-world/

(the tutorials are pretty comprehensive so I don’t have anything to add)

http://docs.jspsych.org/tutorials/rt-task/

Brackets text editor
http://brackets.io/

https://github.com/djnavarro/blankex

These files are part of the
Google app engine
configuration, we’ll ignore
them for now

These files are our jsPsych
(and jquery) libraries, we
don’t need to touch them

These files aren’t very
important, and we can
ignore them for now

This file handles the
main experiment… so
we want to insert the
jsPsych code for our
RT task into this

This file handles the
instructions sheet,
demographics, consent
form, etc… so we’ll
need to edit a few bits
to make it appropriate

Make sure we load all the jsPsych plugins we need… in this case I added
the “text” and “single-stim” plugins because the RT task needs them but
the default blankex template doesn’t include them

Note this line: it loads the welcome.js script, which is needed to run all
the UNSW information sheet stuff, consent, demographic screen, etc

List the image files so that jsPsych preloads them properly

Make sure jsPsych records the turkcode. Nothing to do here for this
task, but often you’ll want to add condition variables here

At the end of the experiment, jsPsych will convert the data to a CSV
format, and display a message on the screen displaying the MTurk
completion code. Nothing to edit here right now

This line handles the communication with Google
app engine. For the moment it’s commented out

Notice that we’ve got this “wrapped” inside the endExperiment
function to prevent the browser moving onto the completion code
before the “post” request gets sent to Google. This is important

This is just a function I use a lot, but there’s nothing for us to do here

Now we have some editing to do: these two introductory
trials are taken straight from our RT experiment

Because these two trials are part of the “instruction loop”
that you can’t escape until you get the instruction check
trials correct, we push them to the “introloop”

Edit the text of the instruction check
questions and the answers

Make sure “correctstring” uses the correct options

(remember: JS indexes from 0, so Q0_answers[2] refers
to the third response option, not the second)

The instruction check questions are implemented
as a survey trial with multiple choice questions

Keep track of whether the participant has made
the correct responses (no editing required by us!)

If the participant gets it wrong, we’re going to need a “splash” screen
that informs them they’ve made a mistake and will be sent back to
the beginning.

However, we only want them to see this if they got it wrong, so this
trial is placed inside a “conditional” node, and we include this
conditional node in the introloop. That way, this “failure” screen only
appears if the participant got it wrong

The whole of this introloop is folded into a single “loop node”, which
we then push to the global timeline.

The whole of this introloop is folded into a single “loop node”, which
we then push to the global timeline.

Then define a splash screen saying “congrats for getting the questions
right” and push it to the global timeline so that it displays as soon as
the user escapes the introloop

…

Some more editing: cut and paste the code
from the RT experiment here (i.e., the
test_block and the debrief_block)

Push the relevant trials to the timeline

Start the experiment by calling welcome, which will ensure that the UNSW stuff
runs first, and it will call the startExperiment() function when it’s finished

https://cloud.google.com/appengine/

https://cloud.google.com/appengine/downloads

Step 1: Select the SDK (software developer kit) for a standard
Python environment

Step 2: Ignore Google’s preferred gcloud thing
and get the original App Engine SDK

Yeah, but I like the
point and click thing

Step 3: Install the GAE Launcher

Step 4: Allow it to make the symbolic links!

Creating the GAE project…

Step 1: Open the app.yaml file and give
your project a unique name

Step 2: Within the GAE Launcher, “Add Existing Application”

Step 2: Within the GAE Launcher, “Add Existing Application”

Step 2: Within the GAE Launcher, “Add Existing Application”

Step 3 (optional): Click on “run”, then “browse”, to see it
running in a simulated version of the GAE environment

Step 4: Click on “dashboard” to take you to the (online) Google App
Engine dashboard for this project, then click “select a project”….

Obviously not, because it doesn’t exist yet!

Step 5: Click on “+” to create a new project

Step 6: Give your project the desired name, and then create it!

Step 7: Open up the shell and type

gcloud app create --project="my-project-name"

Step 8: Select the region (i.e., which of Google’s server farms to use)

Success! It’s all ready to go, now we just get to…

Step 9: Hit the deploy button!

Step 10: Go check out our shiny new website

Updating the GAE project…

Step 1: Make whatever changes you want to on your local copy (e.g.,
uncomment the “post” line so that the application will save the data

Step 2: Hit the deploy button

Checking that your application is writing the data

Use the menu to navigate to the “Datastore”

Yep, there it is. We’ve only got one entry because
only one person has completed the task, but you
can see that it’s all the responses for that person

Extracting and tidying the data from Google

“importData.R” is a convenient little R script. All you need to do is tell it where
your experiment files are located (appPath), where you want the data saved
(dataPath), and what name you would like to give the data…

The script uses the App Engine command line tools to download
all data entries from the GAE project, and creates two files…

The “raw” file contains the data in the same format
in which it was written to the server

The “tidy” file is a CSV that contains one row for every
trial in the experiment (including instructions and
instruction check), with all participants concatenated

Done!

