Pragmatics, probabilities \& psychologists:A Bayesian perspective on some reasoning problems

Dani Navarro
School of Psychology
University of New South Wales
compcogscisydney.com

Contributors, coauthors, collaborators

Keith Ransom	Kristy Martire
Wouter Voorspoels	Ben Newell
Steph Banner	Wai Keen Vong
Ally Tingey	Lauren Kennedy
Jessica Lee	Steve Langsford
	Candy Liu
Amy Perfors	Anastasia Ejova
Brett Hayes	Rachel Stephens
Drew Hendrickson	Gert Storms
Peter Lovibond	Pat Shafto
Michelle Keshwa	Baxter Eaves
Matthew Welsh	Charles Kemp
Matt Dry	Nancy Briggs
Michael Lee	Titia Benders
Chris Donkin	Sean Tauber

Funding

Australian Government

Australian Research Council

THE UNIVERSITY

What are the connections
between human reasoning and statistical inference?

What should we do with this sample of evidence?

The problem of inductive generalisation

?????

What factors shape our inductive inferences?

What factors shape our inductive inferences?

Size and diversity of the sample

Reasoners consider hypotheses

The sample rules out some and not others...

Inductive generalisation is based on hypotheses consistent with the

 sample
Traditional view of reasoning

Reasoning as intuitive statistics

$$
P(h \mid d)=\frac{P(d \mid h) P(h)}{\sum_{h^{\prime} \in \mathcal{H}} P\left(d \mid h^{\prime}\right) P\left(h^{\prime}\right)}
$$

Sample data

Properties of the sample shape
learning

Critical prediction: Learning depends on sampling

$$
P(h \mid d)=\frac{P(d \mid h) P(h)}{\sum_{h^{\prime} \in \mathcal{H}} P\left(d \mid h^{\prime}\right) P\left(h^{\prime}\right)}
$$

The evidentiary value of the sample depends on how the learner thinks it

Sample

 data was generated, or how it came to their attentionEpistemic vigilance: Statistical reasoning about untrustworthy data

These birds have plaxium blood

Does this bird have plaxium blood?

This is silly, but "it's all made up" is absolutely a legitimate sampling assumption

Does this bird have plaxium blood?

The price of inductive freedom is epistemic vigilance

Three year olds are easily deceived...

The price of inductive freedom is epistemic vigilance

... but four year olds are savvy statisticians

Why epistemic vigilance?

People will try to "mislead with a half truth" if the listener is naive...

uninformative

They rarely try this when the listener is suspicious!

Everyday reasoning about the world is intertwined with social reasoning about other people

What does all this buy us? Taking a hint from a helpful teacher

Inductive reasoning when a helpful teacher provides the data

Inductive reasoning when an indifferent world provides the data

Inductive reasoning when an indifferent world provides the data

Sampling mechanism:

Random:

"select items at random"

Helpful:

"select items to efficiently communicate an idea"

Prediction:

Random:

Helpful:

Adding positive instances has minimal effect if they're too similar to things I already know about

Adding positive instances from the same category conveys intent, and drives attention to that category

Previous experience?
(filler trials)

Cover story?

？？？
娄

Humans

$\bigcirc \begin{aligned} \theta=0.31 & \theta=0.22 \\ \theta & =0.11 \\ & \theta=0\end{aligned}$

Knowledge about animal categories (theory of the world) creates structural differences between the different arguments

The sampling model (theory of the context) describes how "adding more data" can have different effects across
conditions and arguments

Using negative evidence to take hints from helpful teachers

Positive evidence

This seems helpful!

Negative evidence

This... not so much

The sound of a falling rock does not

Okay, we start by telling people that Mozart does produce alpha waves...

+Mozart

+Mozart
\dagger
... and they reason sensibly

+Mozart
-Metallica

Adding Metallica as a negative example has a modest, sensible effect on inferences about Nirvana

Negative evidence is interpreted as marking the category boundary

Bayesian reasoners with a random sampling assumption do not produce the effect

Bayesian reasoners with a helpful sampling assumption do produce the effect

What does it mean to be "helpful" anyway?

$$
P(x \mid h) \propto P(h \mid x)^{\alpha}
$$

\uparrow
The data x sampled by the communicator...
\uparrow
... is designed to maximise the learner's degree of belief in hypothesis h

Prediction:

If the negative evidence is perceived as
a helpful hint we should continue to get \longrightarrow the effect

If it is construed as an arbitrary fact, the effect should vanish

Here's the experimental results:

Hint Arbitrary

Superficially useless information can have a huge effect when it is deemed to be helpful

Extension: Negative evidence, fear conditioning \& inductive reasoning

(work in progress!)

Fear conditioning*

CS

US

Negative evidence along the same dimension ("near" CS-)

Lee, Lovibond, Hayes \& Navarro (in prep)

CS- decreases generalisation on this side

CS- increases generalisation on this side

What happens when the "far" CS- has no value on the blue-green dimension?

Lee, Lovibond, Hayes \& Navarro (in prep)

CS- increases generalisation across the whole dimension

These are essentially the same design

Near negative

Distant negative

We needed a fancy sampling assumption for this

What about this?

Bayesian reasoning with random sampling produces the wrong pattern

(aside: compare to animal results, Switalski et al 1966)

Bayesian reasoning that assumes an intentional* sampling process works*

Taking the wrong hint because your teacher is a jerk

(another work in progress!)

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.

Which is more probable?
(a) Linda is a bank teller
(b) Linda is a feminist bank teller

The social/pragmatic account

The social/pragmatic account

(a) Emily F. has heart disease
(b) Andrew J. has heart disease \& high cholesterol

Social / pragmatic context

Social / pragmatic

Random

The "taboo" task

Generate a description that implies but does not openly state that "Linda is a feminist":

Linda is 3 I and has had a rough upbringing, growing up with an abusive father which restricted her mother and her freedom. This upbringing was what made her decide to major in sociology and psychology within university. She has strong views on politics and other similar matters that affect men and women. She regularly attends rallies and protests on the weekend.

The "taboo" task

Generate a description that implies but does not openly state that "Paula is a bank teller":

Paula is 30 , and loves buying clothes even at her age of 30 . She is in contact with money so much that she has been able to calculate the exact change given before the cashier has given it to her. Her skills in counting are ingrained within her brain that she cannot turn it off, due to years dealing with cash

The "taboo" task

Generate a description that implies but does not openly state that "Brenda is a feminist \& bank teller":

Brenda is 32 years old, methodical, logical, and passionate about her beliefs. She is very good with both people and numbers and is often able to spot errors. She is trusted by her friends to handle the money when planning an overseas trip.

She is also a very individual woman and looks up to celebrities such as Emma Watson

Several different versions

"Feminist / Bank Teller", "Engineer / Jazz Musician",
"Introvert / Chef",
"Journalist / Anxious Person",
"Painter / Accountant",
"Extrovert / Statistician",
"Pacifist / Boxer",
"Butcher / Empath",
"Writer / Mechanic"

"Mind reading" task:

Isabelle is 41 years old and is very bright and good with numbers. Her creative flair has always been a passion although until recently she didn't act on it. As a women with two professions she works extremely hard and ensures that her conflicting logical and free spirited natures are harmonious in all aspects of life.

Which of the following do you believe the writer was trying to communicate when they wrote this description:

- Isabelle is a painter
- Isabelle is an accountant

Isabelle is both a painter and an accountant

- None of the above

Navarro, Tingey, Perfors \& Keshwa (in prep)

Standard conjunction task:

Ryan is 26. He spends his spare time unwinding and sitting on a couch at the end of the day reading or watching a movie. He has a small but tight knit group of friends. He likes talking to them individually and dislikes group outings.

How likely is it that this person belongs to each of the following categories? Please give an estimate of the probability from 0 to 100% for each category (0 being impossible and 100 being certain).

Chef and Introvert: \%
Neurosurgeon and pessimist:

In progress: social vs random vignettes

In progress: social vs random vignettes

More tensions between social and random sampling: variations on the Monty Hall Dilemma

(yet another work in progress!)

The Monty Hall dilemma

A suitably constrained host:

	If A is correct	If B is correct	If C is correct
Host opens A	$\mathbf{0 \%}$		
Host opens B		$\mathbf{0 \%}$	
Host opens C			$\mathbf{0 \%}$

Host won't open the prize door

A suitably constrained host:

	If A is correct	If B is correct	If C is correct
Host opens A	$\mathbf{0 \%}$	$\mathbf{0 \%}$	$\mathbf{0 \%}$
Host opens B		0%	
Host opens C			0%

Nor will they open the door you chose (A)

A suitably constrained host:

	If A is correct	If B is correct	If C is correct
Host opens A			
Host opens B	50%		100%
Host opens C	$\mathbf{5 0 \%}$	100%	

Otherwise random

A suitably constrained host: a Bayesian reason to switch

	If A is correct	If B is correct	If C is correct
Host opens A			
Host opens B	50%	0%	100%
Host opens C			

* this is the correct solution to the original problem as stated by vos Savant

An indifferent host chooses randomly

	If A is correct	If B is correct	If C is correct
Host opens A	33%	33%	33%
Host opens B	33%	33%	33%
Host opens C	33%	33%	33%

An indifferent host: a Bayesian reason for indifference

	If A is correct	If B is correct	If C is correct
Host opens A			
Host opens B	33%	33%	33%
Host opens C			

A malicious host who never offers a bet when your choice was wrong!

	If A is correct	If B is correct	If C is correct
Host opens A			
Host opens B	p\%		
Host opens C Host does not open a door			100%

A malicious host with discretion: a Bayesian reason to stay

	If A is correct	If B is correct	If C is correct
Host opens A			
Host opens B	p\%	0%	0%
Host opens C Host does not open a door			

A helpful host with discretion:

	If A is correct	If B is correct	If C is correct
Host opens A	0%	0%	0%
Host opens B		0%	0%
Host opens C Host does not open a door			

A helpful host with discretion:

	If A is correct	If B is correct	If C is correct
Host opens A	0%	0%	0%
Host opens B		0%	
Host opens C Host does not open a door	$\mathbf{1 0 0 \%}$	$\mathbf{0 \%}$	$\mathbf{0 \%}$

A helpful host with discretion: A Bayesian reason to switch

	If A is correct	If B is correct	If C is correct
Host opens A			
Host opens B	0%	0%	100%
Host opens C Host does not open a door			

Probability of switching

People (incorrectly?) view the original MHD as most similar to the malicious version

Possibly people are treating MHD as a "social reasoning" problem, and thinking that the host is malicious?

Can people be sensitive to conditional sampling without requiring a social component?

(also in progress, but almost finished)

Most of these effects rely on sampling by people

This problem can be solved using social cognition

Maybe this is all social reasoning?

Sampling across spatial locations

Sampling across time

Not social cognition

You are currently classifying predators according to whether they pose a threat to humans. Your team, working at this location recently collected 200 observations and found that $50(25 \%)$ of them met this criterion. This week, you have made another 4 observations, of which 3 (75%) met the above criterion. What proportion of predators in the area do you estimate pose a threat to humans?

Let's make this a little more sneaky...

20 small birds with plaxium blood (SP+)

Category sampling: select items based on category membership (i.e. small birds)

Property sampling: select items based on possession of the property (i.e. plaxium blood)

Hypotheses a reasoner might consider

Hypotheses consistent with the data

Category sampling

Frame explains absence of LP+ and LP-

Hypothesis must account for absence of SP-

Category sampling

2 of 3 hypotheses allow LP+ ... so generalisation to large birds is very plausible

Property sampling

Frame explains absence of SP- and LP-

Hypothesis must account for absence of LP+

Property sampling

No remaining hypotheses allow LP+... so generalisation to large birds
is very implausible

Replication of L\&K 2009

Explicit negative evidence (actual LP-) attenuates value of implicit negative evidence (no LP+)

A toy model

If we tell people large birds are common, then the absence of LP+ remains suspicious in the property

But if we tell people large birds are rare, then the absence of LP+ and

People pay attention to mechanistic constraints on sampling processes (not just social cues), and this shapes our reasoning in a sensible way

More extensions?

Choice: What drives people's active sampling?

instrumental learning task

transfer task

with Sean Tauber and Ben Newell

Law: Evidence sampling and expertise in the courtroom

Martire, Edmonds, Navarro \& Newell (2017) Martire, Growns \& Navarro (under review)

Society:Trust-based sampling via selforganising social networks (fake news...)

Cultural Evolution With Self-Selected Sources

Pairwise Trust

Development: Exploratory versus goaldirected sampling by preschoolers

12 Chupcer 1. Fakabilitly Xtadeta
gervativara that are cuutually independeat and ideatically distributed (IID) or X metaht be some senersh qusatity. The cet of pocesible saiues for X is the sinnyle space and is oflou denveded as X. The members $P_{\text {n }}$ of the parsmotric family will he distributions own this spanen \mathcal{X}. If X is mantimonss no discrete, then deasities or probebility mass functions ${ }^{1}$ exist. We will denote the demsity ar mass function for P_{8} by $f_{X \mid 9}(-|a\rangle)$. For commple, if X is a siugle andom variable with sontinuous distribution, taen

$$
\left.P P_{s}(a<x \leq b)=\int_{a}^{b} f_{X_{1} \theta(x)}\right) d x .
$$

If $X=\left(X_{1}, \ldots, X_{n}\right)$, where the Eunctical) $X_{i} \mid c(\mid \theta)$ when $\theta-\theta$, $\int_{x \mid \mathrm{p}}\langle 土 \theta)$		Target A: 70\% red	Lure B: 50\% red	Lure C: 30\% red
where $x=\left(x_{1}, \ldots, x_{n}\right)$. Ather aty the function in (1.1), ss a finctiof function, debated by $L(6)$. Sects; abowe stractare beeed on the ory reycesentation theurean 1.49 . Exci tiva 12 , and Der'inetiis abeureai 1.1.2 Classical Statistics	Lure urns are low novelty			
Classical inferectial tectaniques in mates, moximura likelihood eseim thinge. These will be comred in 8 resder of a kew of clem here. Sup not, the porameter lies in one port, thell sot up s kypothesis $H: \Theta$ f $A: \Theta E f_{f i}$. The simpleat suxt of a subset $R \subseteq X^{\prime}$, and then tejent the estlod the rejection region for do put reject H. Texts ace cupupa poaker fuaction of a west with rcje sixe of a Lest is supena (iif). Cha	Lure urns are high novelty			00

Examples 1.2. Suppowe that $X=$ -
distribution onder Ps. The wat

[^0]
Wrap-up:

On the origins of data and the rationality* of human reasoning

People are smart. Limited, but smart.

"Common sense" reasoning is infuriatingly cunning, and requires people to learn from complex data sources (e.g., other people)

We need to disentangle facts from agendas

We need to detect
trickery

$$
\begin{aligned}
& \text { of of al of } \\
& \text { vin Dax Huk ??? } \\
& \text { Which categry coes this belong to? }
\end{aligned}
$$

We need to know when to reject the rules we're given

We need to read the intention of potentially malicious agents

too many collaborators to list

Common sense reasoning requires uncommonly rich statistical models

Thanks!

[^0]:

 buth tw xpucial coses of a more ganeral type of 'denkily:"

