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The method of serial 
reproduction in memory

Language as sequential 
reproduction of culture

The method of iterated 
learning reveals inductive bias

Bartlett (1920)

Smith et al (2002)

Kalish et al (2007)
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Iterated learning with Bayesian 
agents reveals their shared prior

(Griffiths & Kalish 2007)
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Example: function learning
(Kalish et al 2007)

Conclusion: the cognitive system 
has a prior bias for linear functions



The individual differences question

Do these two people have the same 
“inductive bias” that the procedure reveals?



This seems unlikely to 
reflect a shared prior?



So how do iterated learning chains 
behave when individual differences exist?

Individual differences are ubiquitous



Case study 1:

Does everybody contribute equally 
to the evolution of languages?
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How much influence 
can a strong bias 

confer?

An extreme example



95% of learners 
are unbiased

✓ ⇠ Beta(1, 1)



5% of learners are 
extremely biased

✓ ⇠ Beta(100, 1)
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Case study 2:
How to induce Bayesian groupthink



Juror i records vote, 
removes sheet, passes 

notebook 



Juror i records vote, 
removes sheet, passes 

notebook 

Juror i+1 can see the 
previous vote via 
indentations…



Prior belief about guilt 
P(g) is set by the trial



Likelihood of previous 
juror’s vote P(v|g) requires 
a theory of the other 

juror… what do they know 
that I don’t know?



Bayesian “sheep”

P(v|g) = 0.95

Assumes previous juror has 
considerable additional knowledge, 
assigns evidentiary weight to their 

opinion



Bayesian “goat”

P(v|g) = 0.50

Assumes previous juror has no 
extra knowledge, assigns zero 

weight to their opinion
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A jury of goats ignores one 
another and the “chain” 

converges just fine
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displays 

groupthink
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A mixed jury is 
dominated by goats



Case study 3:

Using differential expertise to create a 
sheep/goat split in an empirical context



“Who will win the 2016 Australian election?”

N=80 MTurk workers 
and UNSW students

Turnbull

Shorten

Howard

Brown



N=80 MTurk workers 
and UNSW students

Andy?



“Imagine that you are at your local bar with some friends. 
After several drinks, the topic of conversation turns to politics. 

You are asked for your opinion on which of the following 
politicians will win the next Australian Federal Election. 

One of your close friends recommends that you say [insert 
option]. You know that they follow Australian politics quite 

closely and know a lot about it; on the other hand, they have 
just had several alcoholic drinks. In light of their 

recommendation, who do you think will win the election?”

The advisor task



The advisor task

???

???



Australians ignored the 
advisor and predicted a 

Turnbull victory

N=124 UNSW students



Americans followed 
the advisor regardless

N=196 MTurk workers



Using these empirical transition matrices 
we can construct iterated learning chains 

with any mixture of nationalities
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Americans claim to be 
totally ignorant about 
Australian politics…
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… and an all American 
iterated learning chain 

“reveals” a “preference” 
for Gordon Brown …  
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 … but if we mix 
some Australians into 

the chain the 
Americans endorse 

Malcolm Turnbull

Proportion Australian
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Case study 4:

It’s not always obvious which inductive 
biases are distorted by heterogeneity



(e.g., Austerweil 2014)

Iterated learning can be used 
to study the biases people 

bring to categorisation 
problems



Exemplar model of categorisation
(Nosofsky 1986; Pothos & Bailey 2009)

A A B

GCM: categorisation probability is 
proportional to sum similarity

P (y 2 A) =

P
a2A

s(a, y)P
X

P
x2X

s(x, y)



GCM allows learners to vary in how 
broadly they generalise from a stimulus

� = 0.1 Broad



GCM allows learners to vary in how 
broadly they generalise from a stimulus

� = 0.1 Broad � = 10 Narrow



Categorisation bias #1

Coherent systems 
assign similar items 

to the same category
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generalisation 

produces a weak 
coherence bias in 

GCM
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Heterogeneity isn’t 
much of a problem here



Equally sized categories

Unequally sized categories

A

B

Categorisation bias #2



0 5 10 15

2.
2

2.
4

2.
6

2.
8

3.
0

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

λ = 0.1

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ●

λ = 1

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ●

λ = 10

Homogeneous Priors

Iterations

Si
ze

 o
f S

m
al

le
r C

at
eg

or
y

Equally sized categories

Unequally sized categories

A

B

Narrow 
generalisation in GCM 

produces bias for 
equally sized categories

Iterated learning chains with 
homogenous populations



0 5 10 15

2.
2

2.
4

2.
6

2.
8

3.
0

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

λ = 0.1

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ●

λ = 1

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ●

λ = 10

Homogeneous Priors

Iterations

Si
ze

 o
f S

m
al

le
r C

at
eg

or
y

Equally sized categories

Unequally sized categories

A

B

Iterated learning chains with 
homogenous populations

Broad generalisation 
produces bias for 

unequal size



0 5 10 15

2.
2

2.
4

2.
6

2.
8

3.
0

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
λ = 0.1

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

λ = 1

●

● ●
●

● ● ● ● ● ● ● ● ● ● ● ●λ = 10

Heterogeneous Priors

Iterations

Si
ze

 o
f S

m
al

le
r C

at
eg

or
y

0 5 10 15

2.
2

2.
4

2.
6

2.
8

3.
0

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

λ = 0.1

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ●

λ = 1

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ●

λ = 10

Homogeneous Priors

Iterations

Si
ze

 o
f S

m
al

le
r C

at
eg

or
y

Equally sized categories

Unequally sized categories

A

B

Heterogeneity in the 
population erases the individual 

differences in responding



• Summary:

• Iterated learning distorts inductive bias when 
individual differences are present



• Summary:

• Iterated learning distorts inductive bias when 
individual differences are present

• Miscalibrated agents can distort their own inductive 
biases even in homogenous chains



• Summary:

• Iterated learning distorts inductive bias when 
individual differences are present

• Miscalibrated agents can distort their own inductive 
biases even in homogenous chains

• IL chains favour learners with extreme biases



• Summary:

• Iterated learning distorts inductive bias when 
individual differences are present

• Miscalibrated agents can distort their own inductive 
biases even in homogenous chains

• IL chains favour learners with extreme biases

• The magnitude of the distortion is variable



• Summary:

• Iterated learning distorts inductive bias when 
individual differences are present

• Miscalibrated agents can distort their own inductive 
biases even in homogenous chains

• IL chains favour learners with extreme biases

• The magnitude of the distortion is variable

• Implications:

• IL has limits as a tool for “revealing priors”

• IL is useful for studying “distortions” in cultural and 
linguistic evolution



Thanks!
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The effect is exaggerated if learners maximise 
rather than sample



+

+

+

+

-

Agents prefer to receive 
data from trusted sources

Simple ToM to update 
trustworthiness
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+

+

+

-

Can we avoid this by 
introducing ground truth 
into the social network?

Future work:



+

-

Can we avoid this by giving our 
agents a more sophisticated ToM?

garbage or 
different 

knowledge?

confirmation 
bias?

Future work:


