When extremists win Iterated learning with heterogenous agents

Dani Navarro
School of Psychology
University of New South Wales
Arthur Kary
School of Psychology
University of New South Wales
Amy Perfors
School of Psychological Science
University of Melbourne
Scott Brown
School of Psychology
University of Newcastle

Chris Donkin
School of Psychology
University of New South Wales

Cultural evolution

Cultural evolution

Cultural evolution

Variants of 'Rachel' among U.S. baby names, 1880-2012

Random drift?

Biases inherent to the cognitive system?

 environment?from the
Influence from

The dynamics of the communication system?

Influence from
from the environment?

Biases inherent to the cognitive system?

The dynamics of the communication system?

The iterated learning paradigm

The iterated learning paradigm

The method of serial reproduction in memory

Bartlett (1920)

The iterated learning paradigm

The method of serial reproduction in memory

Bartlett (I920)

Language as sequential reproduction of culture

Smith et al (2002)

Figure 2. The iterated learning model. The ith generation of the population consists of a single agent A who has hypothesis $H_{\text {: }}$. Agent A_{i} is prompted with a set of meanings M_{i}. For each of these meanings the agent produces an utterance using H_{1}. This yields a set of utterances $U_{\text {. }}$. Agent A_{+1} observes U_{i} and forms a hypochesis H_{i+1} to explain the set of observed utcerances. This process of observation and hypothesis formation constituces learning.

The iterated learning paradigm

The method of serial reproduction in memory

Bartlett (I920)

Language as sequential reproduction of culture

Smith et al (2002)

Figure 2. The iterated learning model. The ith generation of the population consists of a single agent A who has hypothesis $H_{\text {: }}$. Agent A_{i} is prompted with a set of meanings M_{i}. For each of these meanings the agent produces an utterance using H_{1}. This yields a set of utterances U_{1}. Agent A_{4+1} observes U_{i} and forms a hypochesis H_{i+1} to explain the set of observed utcerances. This process of observation and hypothesis formation constitutes learning.

The method of iterated learning reveals inductive bias

Kalish et al (2007)

Reforeuntic 1

Ruses.

$R_{\text {rumer }} 6$.

Iterated learning with Bayesian agents reveals their shared prior

$$
\begin{aligned}
P\left(h_{n}=i\right) & =\sum_{j} P_{\text {sarp }, P A}\left(h_{n}=i \mid h_{n-1}=j\right) P\left(h_{n-1}=j\right) \\
& =\sum_{j} \sum_{d \in \mathcal{D}} P_{\text {samp }}\left(h_{n}=i \mid d\right) P_{P A}\left(d \mid h_{n-1}=j\right) P\left(h_{n-1}=j\right) \\
& =\sum_{d \in \mathcal{D}} P_{\text {sarrp }}\left(h_{n}=i \mid d\right) \sum_{j} P_{P A}\left(d \mid h_{n-1}=j\right) P\left(h_{n-1}=j\right) \\
& =\sum_{d \in \mathcal{D}} P_{\text {sarp }}\left(h_{n}=i \mid d\right) P_{P A}(d) \\
& =\sum_{d \in \mathcal{D}} \frac{P_{P A}\left(d \mid h_{n}=i\right) P\left(h_{n}=i\right)}{P_{P A}(d)} P_{P A}(d) \\
& =P\left(h_{n}=i\right) \sum_{d \in \mathcal{D}} P_{P A}\left(d \mid h_{n}=i\right),
\end{aligned}
$$

(Griffiths \& Kalish 2007)

Example: function learning

(Kalish et al 2007)

original

Example: function learning

(Kalish et al 2007)

original

final

Example: function learning

(Kalish et al 2007)

Conclusion: the cognitive system

 has a prior bias for linear functions

The individual differences question

\dagger
Do these two people have the same "inductive bias" that the procedure reveals?

This seems unlikely to reflect a shared prior?

Individual differences are ubiquitous

So how do iterated learning chains behave when individual differences exist?

Case study I:

Does everybody contribute equally to the evolution of languages?

A simple Bayesian learner

A simple Bayesian learner

A simple Bayesian learner

Some learners use a prior that imposes a weak bias

Some learners use a prior that imposes a weak bias

Some learners use a prior that imposes a strong bias

input matches learner A bias

output matches
learner A bias

Learners with weak biases tend to mirror input even when it disagrees with the learner bias

output matches
learner B bias
input matches learner A bias

Learners with strong biases do not:

They (partially) impose their own

biases
output is a compromise between learner B bias and the input

Weak bias

Strong bias

Weak bias

Homogenous population with weak bias

Weak bias

Strong bias

Homogenous population with strong bias

Strong bias

Iterated learning chain converges to the prior - - -

Heterogenous population with equal proportions of both learner types

Mixed chain does not converge to the prior

咜 \rightarrow, \rightarrow,
weak bias

weak bias

very responsive to input

weak bias

weak bias

very responsive to input

strong bias

strong bias

insensitivity to input

weak bias

weak bias

very responsive to input

small influence on the chain

strong bias

strong bias

insensitivity to input

greater influence on the chain

How much influence can a strong bias confer?

An extreme example

The average response if everyone samples from their prior

Iteration

Iterated learning chain is dominated by the extreme bias learners

Case study 2:
 How to induce Bayesian groupthink

Juror i records vote, removes sheet, passes notebook

Juror i records vote, removes sheet, passes notebook

MATT GROENING
Juror $i+1$ can see the previous vote via indentations...

Prior belief about guilt $P(g)$ is set by the trial

Likelihood of previous juror's vote $P(v \mid g)$ requires a theory of the other juror... what do they know that I don't know?

Bayesian "sheep"

Assumes previous juror has considerable additional knowledge, assigns evidentiary weight to their opinion

Bayesian "goat"

Assumes previous juror has no extra knowledge, assigns zero weight to their opinion

100\% Sheep

100\% Sheep

A jury of sheep displays groupthink

$$
\begin{aligned}
\boldsymbol{\pi} \boldsymbol{T} & \propto[d, p]\left[\begin{array}{cc}
1-p & p \\
d & 1-d
\end{array}\right] \\
& =[d(1-p)+p d, d p+p(1-d)] \\
& =[d, p] \propto \pi
\end{aligned}
$$

A mixed jury is dominated by goats

Case study 3:

Using differential expertise to create a sheep/goat split in an empirical context

"Who will win the 2016 Australian election?"

$\mathrm{N}=80$ MTurk workers and UNSW students

The advisor task

"Imagine that you are at your local bar with some friends. After several drinks, the topic of conversation turns to politics.

You are asked for your opinion on which of the following politicians will win the next Australian Federal Election.

One of your close friends recommends that you say [insert option]. You know that they follow Australian politics quite closely and know a lot about it; on the other hand, they have just had several alcoholic drinks. In light of their recommendation, who do you think will win the election?"

The advisor task

Australians ignored the advisor and predicted a Turnbull victory

Americans followed the advisor regardless

$\mathrm{N}=196$ MTurk workers

Using these empirical transition matrices we can construct iterated learning chains with any mixture of nationalities

Americans claim to be totally ignorant about Australian politics...

- Shorten
\triangle Turnbull
+ Howard
\times Brown

... and an all American iterated learning chain "reveals" a "preference" for Gordon Brown ...

Australians choose Turnbull no matter how many Americans are included

Case study 4:

It's not always obvious which inductive biases are distorted by heterogeneity

Iterated learning can be used to study the biases people bring to categorisation problems
(e.g.,Austerweil 2014)

$/$

Exemplar model of categorisation

(Nosofsky 1986; Pothos \& Bailey 2009)

GCM: categorisation probability is proportional to sum similarity

$$
P(y \in A)=\frac{\sum_{a \in A} s(a, y)}{\sum_{X} \sum_{x \in X} s(x, y)}
$$

GCM allows learners to vary in how broadly they generalise from a stimulus

GCM allows learners to vary in how broadly they generalise from a stimulus

Categorisation bias \#I

Coherent systems
assign similar items to the same category

Homogenous population

Homogenous population

Heterogeneity isn't much of a problem here

Equally sized categories

Categorisation bias \#2

Unequally sized categories

Iterated learning chains with homogenous populations

Iterated learning chains with homogenous populations

Heterogeneity in the

 population erases the individual differences in respondingEqually sized categories

B

Unequally sized categories A \square \square \square \square \square \square

- Summary:
- Iterated learning distorts inductive bias when individual differences are present

- Summary:
- Iterated learning distorts inductive bias when individual differences are present
- Miscalibrated agents can distort their own inductive biases even in homogenous chains

- Summary:
- Iterated learning distorts inductive bias when individual differences are present
- Miscalibrated agents can distort their own inductive biases even in homogenous chains
- IL chains favour learners with extreme biases

- Summary:
- Iterated learning distorts inductive bias when individual differences are present
- Miscalibrated agents can distort their own inductive biases even in homogenous chains
- IL chains favour learners with extreme biases
- The magnitude of the distortion is variable

- Summary:
- Iterated learning distorts inductive bias when individual differences are present
- Miscalibrated agents can distort their own inductive biases even in homogenous chains
- IL chains favour learners with extreme biases
- The magnitude of the distortion is variable
- Implications:
- IL has limits as a tool for "revealing priors"
- IL is useful for studying "distortions" in cultural and linguistic evolution

$$
\rho_{x_{n}}
$$

The effect is exaggerated if learners maximise rather than sample

Agents prefer to receive data from trusted sources

Simple ToM to update trustworthiness

Can we avoid this by introducing ground truth into the social network?

Future work:

Can we avoid this by giving our agents a more sophisticated ToM?

