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What dynamics underpin cultural and linguistic
change? What do they say about the mind?

Variants of 'Rachel’ among U.S. baby names, 1880-2012
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The method of serial
reproduction in memory

Language as sequential
reproduction of culture
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Figure 2. The iterated learning model, The ith generation of the population consists of a single agent A; who has
hypothesis H,. Agent A; is prompted with a set of meanings M,. For each of these meanings the agent produces an
utterance using H,. This yields a set of utterances U,. Agent A, | observes U, and forms a hypothesis H,, | to explain
the set of observed utterances. This process of observaton and hypothesis formation constitutes learning.
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reproduction of culture

The method of iterated
learning reveals inductive bias
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Figure 2. The iterated learning model. The ith generation of the population consists of a single agent A, who has
hypothesis H,. Agent A; is prompted with a set of meanings M,. For each of these meanings the agent produces an
utterance using H,. This yields a set of utterances U,. Agent A, | observes U, and forms a hypothesis H,, | to explain
the set of observed utterances. This process of observation and hypothesis formation constitutes learning.




Example: function learning
(Kalish et al 2007)
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Example: function learning
(Kalish et al 2007)

Conclusion: we have an inductive
bias for linear functions
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Proof that iterated learning with
Bayesian agents reveals the prior
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Hm.
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So how do iterated learning chains
behave when individual differences exist?

\HypOtheSIS/ (Hypothesus ) \Hypothesus/
O




Case study I:
Does everybody contribute equally
to the evolution of languages!
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Strong bias for
C regularity
Bayesian models for )
language regularisation > - :
with two different kinds N
of bias .
VWealc bias against
P regularity
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A heterogenous chain does
not converge to the average
of the prior biases
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...and the distribution of
responses is severely
distorted
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Case study 2:

Bayesian groupthink

UNSW



Juror i records vote,

removes sheet, passes
notebook



Juror i records vote,

removes sheet, passes
notebook

MAT GROENING

Juror i+1 can see the

previous vote via
indentations...



Prior belief about guilt
P(g) is set by the trial

MAT GROEING



Likelihood of previous juror’s
vote P(v|g) requires theory of
mind... what do they know
that | don’t know!?

MAT GROEING



Bayesian “sheep”

Pw|g) =0.95

Assumes previous juror has
additional knowledge, assigns
evidentiary weight to their opinion




Bayesian “goat”

Pw|g) =0.50

Assumes previous juror has no
extra knowledge, assigns zero
weight to their opinion
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A jury of goats ighores one
another and the “chain”
converges just fine
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A mixed jury is
dominated by goats
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Case study 3:
An empirical illustration
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“Who will win the 2016 Australian election?”

Rating
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N=80 MTurk workers
and UNSWV students



Rating
10 20 30 40 50

0

N=80 MTurk workers
and UNSWV students



The advisor task




Choice

UNSW Politics

Brown -

Howard -

Shorten -

Turnbull -

| | 1 |
Turnbull Shorten Howard Brown

Advice

Australians ignored the
advisor and predicted a
Turnbull victory
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N=124 UNSWV students




Choice

Brown -

Howard -

Shorten -

Turnbull

MTurk Politics

] | |
Turnbull Shorten Howard Brown

Advice

Americans followed
the advisor regardless

N=196 MTurk workers



Using these empirical “transition matrices”
we can construct iterated learning chains
with any mixture of nationalities
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If we mix some
Australians into the
chain the Americans

endorse Malcolm
Trunbull
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Australians choose
Turnbull no matter
how many Americans
are included
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Case study 4:
A non-Bayesian example
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Iterated learning can be used
to study the biases people
bring to categorisation

— " problems
(e.g.,Austerweil 2014)
- - - -
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Exemplar model of categorisation

(Nosofsky 1986; Pothos & Bailey 2009)

A A
GCM: categorisation probability is
proportional to sum similarity



GCM allows learners to vary in how
broadly they generalise from a stimulus




GCM allows learners to vary in how
broadly they generalise from a stimulus
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Coherent categories:
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Categorisation bias #l

Coherent systems

A

Incoherent categories:

a

assign similar items
to the same category



Iterated learning with GCM when
learners are

Narrow

=10 generalisation
implies strong
coherence bias

coherence

Iiteration



Iterated learning with GCM when
learners are homogenous
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isn’t much
of a problem here




Equally sized categories
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Homogenous
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Case study 5:
Belief evolution in a self-organising
Bayesian social network
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A crowd of Bayesian
speakers

Each agent maintains belief
about the rate of + and
about the trustworthiness
of other agents




Agents prefer to receive
data from trusted sources

What could
possibly go wrong!?
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Belief
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extremism/?



...with the biggest extremists
being the most trusted agents

Pairwise Trust
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...with the extremists being most trusted
within group; and no between-group trust




Belief
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And small “rogue” groups might form
their own isolated world.
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/ Future work:

Can we avoid this by
introducing ground truth
into the social network!?




garbage or h
different

knowledge?

confirmation ,
bias!?

Future work:

Can we avoid this by giving our
agents a more sophisticated ToM!?



® Summary:

® |terated learning distorts inductive bias when
individual differences are present

® Miscalibrated agents can distort their own inductive
biases even in homogenous chains

® |L chains favour learners with strong biases
® The magnitude of the distortion is variable

® Social structure, theory of mind, the link to the
world... they all matter

® |mplications:

® |L is limited as a tool for “revealing inductive priors”

® |L is potentially useful for studying “distortions’ in
cultural and linguistic evolution



Thanks!
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