Deceived by data or savvy about statistics? The impact of sampling on inductive reasoning

Dan Navarro
School of Psychology
University of New South Wales
compcogscisydney.com

I would like to acknowledge this land that we meet on today as the traditional lands for the Kaurna people, and respect their spiritual relationship with their country.

I also acknowledge the Kaurna people as the custodians of the greater Adelaide region and that their cultural and heritage beliefs are still as important to the living Kaurna people today

Contributors, coauthors, collaborators

Amy Perfors Keith Ransom
Wouter Voorspoels Brett Hayes Steph Banner
Drew Hendrickson
Michelle Keshwa
Sean Tauber
Matthew Welsh
Matt Dry
Michael Lee
Titia Benders
Chris Donkin

Kristy Martire
Ben Newell
Wai Keen Vong
Lauren Kennedy
Steve Langsford
Candy Liu
Anastasia Ejova
Ally Tingey
Rachel Stephens
Gert Storms
Pat Shafto
Baxter Eaves
Charles Kemp
Nancy Briggs

Funding

Australian Government
Australian Research Council

How do we make choices in an uncertain world?

(judgment \& decision making)

How do people acquire new knowledge?

(categorisation \& reasoning)

How should psychologists analyse our data?
(math psych \& statistics)

How do people acquire new knowledge?

(categorisation \& reasoning)

What kind of prior biases shape the acquisition of new knowledge?

How do people acquire new knowledge?

(categorisation \& reasoning)

What old knowledge do people use to guide inferences?

How do people acquire new knowledge?

(categorisation \& reasoning)

What computational strategies
do people use to simplify complex problems?

In the case where $n=1$ we observe that,

$$
\begin{align*}
\int_{\mathcal{R}} P\left(x_{1}, x_{1} \in r_{t} \mid r_{t}=r\right) d r & =\int_{0}^{z_{l}} \int_{z_{u}}^{1} P\left(x_{1} \mid r_{t}=[l, u]\right) d u d l \\
& =\int_{0}^{z_{l}} \int_{z_{u}}^{1}(u-l)^{-1} d u d l \\
& =\int_{0}^{z_{l}}[\ln (u-l)]_{z_{u}}^{1} d l \\
& =\int_{0}^{z_{l}} \ln (1-l)-\ln \left(z_{u}-l\right) d l \\
& =[(l-1) \ln (1-l)-l]_{0}^{z_{l}}-\left[\left(l-z_{u}\right) \ln \left(z_{u}-l\right)-l\right]_{0}^{z_{l}} \\
& =\left(\left(z_{l}-1\right) \ln \left(1-z_{l}\right)-z_{l}\right)-\left(\left(z_{l}-z_{u}\right) \ln \left(z_{u}-z_{l}\right)-z_{l}+z_{u} \ln z_{u}\right) \\
& =\left(z_{u}-z_{l}\right) \ln \left(z_{u}-z_{l}\right)-\left(1-z_{l}\right) \ln \left(1-z_{l}\right)-z_{u} \ln z_{u} \tag{24}
\end{align*}
$$

Applying the same procedure as before yields the expression
$P\left(y \in r_{t} \mid x_{1}, x_{1} \in r_{t}\right)=\left\{\begin{array}{lll}\frac{\left(z_{u}-y\right) \ln \left(z_{u}-y\right)-(1-y) \ln (1-y)-z_{u} \ln z_{u}}{\left(z_{u}-z_{l}\right) \ln \left(z_{u}-z_{l}\right)-\left(1-z_{l}\right) \ln \left(1-z_{l}\right)-z_{u} \ln z_{u}} & \text { if } & y<z_{l} \\ \frac{\left(y-z_{l}\right) \ln \left(y-z_{l}\right)-\left(1-z_{l}\right) \ln \left(1-z_{l}\right)-y \ln y}{1} & \text { if } & z_{l} \leq y \leq z_{u} \\ \frac{\left(z_{u}-z_{l}\right) \ln \left(z_{u}-z_{l}\right)-\left(1-z_{l}\right) \ln \left(1-z_{l}\right)-z_{u} \ln z_{u}}{} & \text { if } & z_{u}<y\end{array}\right.$
In this case, however, the expression can be further simplified since $z_{l}=z_{u}=x_{1}$:
$P\left(y \in r_{t} \mid x_{1}, x_{1} \in r_{t}\right)=\left\{\begin{array}{cll}\frac{(1-y) \ln (1-y)+x_{1} \ln x_{1}-(x-y) \ln \left(x_{1}-y\right)}{\left(1-x_{1}\right) \ln \left(1-x_{1}\right)+x_{1} \ln x_{1}} & \text { if } y<x_{1} \\ \frac{\left(1-x_{1}\right) \ln \left(1-x_{1}\right)+y \ln y-\left(y-x_{1}\right) \ln \left(y-x_{1}\right)}{\left(1-x_{1}\right) \ln \left(1-x_{1}\right)+x_{1} \ln x_{1}} & \text { if } & \text { if } \\ \frac{(1)}{} x_{1}<y\end{array}\right.$
(Obviously, this expression could be derived directly, rather than found as a special case

In the case where $n=1$ we observe that,

$$
\int_{\mathcal{R}} P\left(x_{1}, x_{1} \in r_{t} \mid r_{t}=r\right) d r=\int_{0}^{z_{l}} \int_{z_{u}}^{1} P\left(x_{1} \mid r_{t}=[l, u]\right) d u d l
$$

$$
=\int_{0}^{z_{l}} \int_{z_{u}}^{1}(u-l)^{-1} d u d l
$$

(Obviously, this expression could be derived directly, rather than found as a special case

Why take a computational approach to cognitive science?

Computational models make it easier to be precise about one's theories

??categorisation is sort of related to similarity I guess?

categorisation probability is proportional to the sum of similarities to previous exemplars

Formal descriptions of human inductive biases can improve machine learning

inferring intention from actions
"I'm not driving"

understanding the relevance of utterances to context
teapot death star?

constructing categories
from instances

Machine agents need to interact with humans, so they need to understand us

machines need maths to describe how the humans adjust speech patterns when the speech recognition system stuffs up

> autonomous vehicles need to
> understand how human drivers respond to weirdness (e.g., in Sydney)

Conjecture:

Reasoning is statistical inference

What should we do with this sample of evidence?

The problem of inductive generalisation

?????

What factors shape our inductive inferences?

What factors shape our inductive inferences?

Size and diversity of the sample

Reasoners consider hypotheses

The sample rules out some and not others...

Inductive generalisation is based on hypotheses consistent with the

 sample
Traditional view of reasoning

Reasoning as intuitive statistics

$$
P(h \mid d)=\frac{P(d \mid h) P(h)}{\sum_{h^{\prime} \in \mathcal{H}} P\left(d \mid h^{\prime}\right) P\left(h^{\prime}\right)}
$$

Sample data

Properties of the sample shape learning

Critical prediction: Learning depends on sampling

$$
P(h \mid d)=\frac{P(d \mid h) P(h)}{\sum_{h^{\prime} \in \mathcal{H}} P\left(d \mid h^{\prime}\right) P\left(h^{\prime}\right)}
$$

The evidentiary value of the sample depends on how the learner thinks it was generated, or how it came to their attention

Epistemic vigilance: Statistical reasoning about untrustworthy data

These birds have plaxium blood

Does this bird have plaxium blood?

\uparrow
"It's all made up" is absolutely a legitimate sampling assumption

Does this bird have plaxium blood?

The price of inductive freedom is epistemic vigilance

Three year olds are easily deceived...

The price of inductive freedom is epistemic vigilance

... but four year olds are savvy statisticians

Why epistemic vigilance?

People will try to "mislead with a half truth" if the listener is naive...

They rarely try this when the listener is suspicious!

Everyday reasoning about the world is intertwined with social reasoning about other people

What does all this buy us? Taking a hint from a helpful teacher

Inductive reasoning when a helpful teacher provides the data

Inductive reasoning when an indifferent world provides the data

Inductive reasoning when an indifferent world provides the data

Sampling mechanism:

Random:

"select items at random"

Helpful:

"select items to efficiently communicate an idea"

Prediction:

Random:

 minimal effect if they're too similar to things I already know about

Adding positive instances from the same category conveys intent, and drives attention to that category

Previous experience?
(filler trials)

Cover story?

$\bigcirc \begin{array}{ll}\theta=0.31 & \theta=0.22 \\ \theta=0.11 & \theta=0 \\ \bigcirc\end{array}$

Knowledge about animal categories (theory of the world) creates structural differences between the different arguments

The sampling model (theory of the context) describes how "adding more data" can have different effects across
conditions and arguments

Taking a hint from a helpful teacher... with negative evidence

You want to infer whether all ravens are black. Which of these observations is more helpful?

Positive evidence

Negative evidence

Positive evidence

Negative evidence

Okay, we start by telling people that Mozart does produce alpha waves...

+Mozart

+Mozart
\dagger
... and they reason sensibly

Adding Metallica as a negative example has a modest, sensible effect on inferences about Nirvana

Negative evidence is interpreted as marking the category boundary

Bayesian reasoners with a random sampling assumption do not produce the effect

Bayesian reasoners with a helpful sampling assumption do produce the effect

What does it mean to be "helpful" anyway?

$$
P(x \mid h) \propto P(h \mid x)^{\alpha}
$$

\uparrow
The data x sampled by the communicator...
\uparrow
... is designed to maximise the learner's degree of belief in hypothesis h

Mozart but not rocks. Wink wink

Prediction:

If the negative evidence is perceived as
a helpful hint we should continue to get \longrightarrow the effect

If it is construed as an arbitrary fact, the effect should vanish

Here's the experimental results:

Hint Arbitrary

Superficially useless information can have a huge effect when it is deemed to be helpful

WTF is this "falling rocks" thing? It must be relevant somehow, so...

Taking the wrong hint when your teacher is a jerk

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.

Which is more probable?
(a) Linda is a bank teller
(b) Linda is a feminist bank teller

The social/pragmatic account

The social/pragmatic account

(a) Emily F. has heart disease
(b) Andrew J. has heart disease \& high cholesterol

Social / pragmatic context

Random / disconnected fact condition

Social / pragmatic

Random

Sampling shapes reasoning even without a helpful (or deceitful) human involved

Sampling by different people

This problem can be solved using social cognition

Maybe this is all social reasoning?

Sampling across spatial locations

Sampling across time

This is not social cognition!

You are currently classifying predators according to whether they pose a threat to humans. Your team, working at this location recently collected 200 observations and found that $50(25 \%)$ of them met this criterion. This week, you have made another 4 observations, of which 3 (75%) met the above criterion. What proportion of predators in the area do you estimate pose a threat to humans?

Let's make this a little more sneaky...

20 small birds with plaxium blood (SP+)

Category sampling: select items based on category membership (i.e. small birds)

Property sampling: select items based on possession of the property (i.e. plaxium blood)

Hypotheses a reasoner might consider

Hypotheses consistent with the data

Category sampling

Frame explains absence of LP+ and LP-

Hypothesis must account for absence of SP-

Category sampling

2 of 3 hypotheses allow LP+ ... so generalisation to large birds is very plausible

Property sampling

Frame explains absence of SP- and LP-

Hypothesis must account for absence of LP+

Property sampling

No remaining hypotheses allow LP+... so generalisation to large birds
is very implausible

Replication of L\&K 2009

Explicit negative evidence (actual LP-) attenuates value of implicit negative evidence (no LP+)

A toy model

If we tell people large birds are common, then the absence of LP+ remains suspicious in the property

But if we tell people large birds are rare, then the absence of LP+ and

People pay attention to mechanistic constraints on sampling processes (not just social cues), and this shapes our reasoning in a sensible way

Extensions?

Choice: What drives people's active sampling?

instrumental learning task

transfer task

with Sean Tauber and Ben Newell

Law: Evidence sampling and expertise in the courtroom

Society:Trust-based sampling via selforganising social networks (fake news...)

Cultural Evolution With Self-Selected Sources

Pairwise Trust

Development: Exploratory versus goaldirected sampling by preschoolers

2 Chapter 1. Probsbility Models
servations that are mutually independent and identically distributed (IID), or X might be some general quantity. The set of possible values for X is the sample space and is often denoted as \mathcal{X}. The members P_{g} of the parametric farmily will be distribations over this space \mathcal{X}. If X is continuous or discrete, then densities or probability mass functions ${ }^{1}$ exist. We will denote the density or mass function for P_{θ} by $f_{X \backslash \theta}(\cdot \mid \theta)$. For example, if X is a single random variable with continuous distribation, then

$$
P_{0}(a<X \leq b)=\int_{a}^{b} f_{X \mid \theta}(x \mid \theta) d x .
$$

[^0]
Wrap-up:

On the origins of data and the rationality of human reasoning

People are smart. Limited, but smart.

"Common sense" reasoning is infuriatingly cunning, and requires people to learn from complex data sources (e.g., other people)

We need to disentangle facts from agendas

We need to detect
trickery

$$
\begin{aligned}
& \text { of of of of ? Huk ??? } \\
& \text { Yun Dax } \\
& \text { Which category does this belong to? } \\
& \text { Yun Dax Huk New }
\end{aligned}
$$

We need to know when to reject the rules we're given

We need to read the intention of potentially malicious agents

too many collaborators to list

Common sense reasoning requires uncommonly rich statistical models

Thanks!

[^0]: UUsing the theory of messures (see Appendix A) we will be able to dispense
 with the distinction between densities and probasbility mases functions. They will
 both be special cases of a more gencral type of "density."

