Never Stand Still

Learning the structure of an explore-exploit dilemma

Dan Navarro

A puzzle

Human RL needs to infer which model to apply in which context, solve problems with large state spaces, using limited computational resources and with minimal training data in any one context. How?

My decision making task this morning

Go to a kids party?

My decision making task this morning

Go to a kids party?

Choices vary in many respects

Immediately rewarding, not intellectually taxing, emotional competence required...

Probably long term rewarding, high cognitive load, not emotionally difficult...

My direct experience is non-existent

This choice problem doesn't actually arise very often

> So l'm necessarily constructing a model on the fly of what might happen based on partiallyrelevant data
(... decision making requires inductive generalisation)

How do people acquire new knowledge?
(categorisation \& reasoning)

How do people acquire new knowledge?

(categorisation \& reasoning)

What kind of prior biases shape

 the acquisition of new knowledge?

How do people acquire new knowledge?

(categorisation \& reasoning)

What old knowledge do people use to guide inferences?

How do people acquire new knowledge?

(categorisation \& reasoning)

What computational strategies
do people use to simplify complex problems?

How do people acquire new knowledge?

How do we make choices in an uncertain world?

(judgment \& decision making)
(categorisation \& reasoning)

Sequential decision tasks under uncertainty

How do people acquire new knowledge?

How do we make choices

 in an uncertain world?(judgment \& decision making)

(categorisation \& reasoning)

Learner's theory of the data generating mechanism induces qualitative shifts in reasoning

Condition
Both Relevant Relevant Fillers Random Fillers Both Random

Bayes:

Mixed Sampling
$\theta=0.31 \quad \theta=0.22$
$\theta=0.11 \quad \theta=0$

The evidentiary value of the same new fact points in opposite directions depending on how it was selected

> Learner's theory of the data generating mechanism induces qualitative shifts in reasoning

Human behaviour in an (extended) Monty Hall problem depends on social intent of the host

Learner's theory of the data generating mechanism induces qualitative shifts in reasoning

Puzzle, reframed:

Where does the theory of (model for) the decision problem come from?

2 Caspet 1 Probabaty Moleth
urvatiena that aro mutually independent and identically diatributed (IID)

 discrete, then densities or probability mas furctiosal edit. We will detote

$P(a<X \leq b)=\int_{0}^{b} f_{x=0}(x \mid \theta) d x=$
If $x=\left(X_{1}, \ldots, X_{0}\right)$, where the X_{4} are HD weat with denity (er mand
$\left.f_{x \times 0}(x \mid y)=\prod_{i=1}^{n} f_{x, p}\left(x_{1}\right) \mid\right)$.

 ascoion, densted by $L(9)$. Section 13 is dewted to a motivution of the repeesmation thoores $1 / 43$. Exchangerbaity is discused in deall in Sec. ine 12 , and Definetils theorem is the enchopet of Section 1.4.
1.1.2 Classical Stutistics

 at the paraseter lis in oxe peticen Ω_{μ} of the parmeter space Whe coul

 be called the ryection regios for tho teet. If a \& R, we would ner that wh
 power /nction of a sest sith sjemico regoe A is $A(M)=P(X \in K)$. D .

Building Machines That Learn and Think Like People

Brenden M. Lake, ${ }^{1}$ Tomer D. Ullman, ${ }^{2,4}$ Joshua B. Tenenbaum, ${ }^{2,4}$ and Samuel J. Gershman ${ }^{3,4}$
${ }^{1}$ Center for Data Science, New York University
${ }^{2}$ Department of Brain and Cognitive Sciences, MIT
${ }^{3}$ Department of Psychology and Center for Brain Science, Harvard University Center for Brains Minds and Machines

Abstract

Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advaboes have come from using deep neural networks trainet end-to-end in tasks such as object recognition, video games, and board games, achieving perfornance that equals or even beats humans in some respects. Despite tbeir biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and earich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent cural network advances with more structured cognitive models.

"You've spent all your life learning games; there can't be a rule, move, concept or idea in [super complicated game] you haven't encountered ten times before in other games; it just brought them all together."

The players of games

Trading-off information and reward

The tiger problem

(as per every text on POMDPs)

Actions?

Make an observation: Listen at the door for the sounds of a tiger

Take a bet: Open a door and see what's behind it

FIGURE 16.3 The tiger POMDP. The subject does not know if she is in state s_{L}, where the left door a_{L} is dangerous, or state s_{R}, where the right door a_{R} is dangerous. Only by waiting (a_{w}) and accumulating evidence about which state obtains is it safe to choose a door.

Information versus reward problems for online workers...

Do some work: Tag some images, and eventually get a reward when the requester pays. If they pay. No immediate knowledge... but possibly a reward

Do your research: Check out Turkopticon (etc.), read the reviews for the requester. Maybe check out Turk and see if there are any better jobs on offer?
No immediate reward... only information

Information versus reward problems for resource companies...

Invest in exploitation: Dig some mines, sink some wells, build some factories. Doesn't teach us much about the world (initially), but it's how the company makes money

Invest in exploration: Send out geologists, hire JDM researchers to teach geologists how to do statistics, etc. Doesn't sell any barrels of oil, but identifies potentially profitable actions

A simple experimental task

 (adapted from Tversky \& Edwards 1966)
The observe or bet task

This is a "blox" machine

These lights flash intermittently.

One light tends to come on more often than the other.

You don't know which

Observe Guess Blue Guess Red

At every point in time, you can make an observation or bet on which outcome will occur...

If you OBSERVE, you get to see which light turns on

... but you receive no reward (information only)

If you BET (on blue) you receive a point (+I) if you're correct, and lose if you're wrong (-I).

But the outcome is hidden from you until the end to the task, so you can't learn from this trial

The task

- Win as many points in a 50 trial "game"
- Play a series of 5 games
- Two kinds of environment
- Static: Outcome probabilities are fixed
- Dynamic: Outcome probabilities undergo discrete changes

How does a rational agent allocate behaviour in this task?

A simple Bayesian analysis of the beliefs the agent holds

Confidence in Blue $=75 \%$

Posterior beliefs given a single OBSERVE action on trial I
$P(\theta \mid x) \propto P(x \mid \theta) P(\theta)$

Confidence in Blue $=50 \%$

Probability of a Blue Light
Beliefs updated sequentially: today's posterior is tomorrow's prior

Confidence in Blue $=69 \%$

Plot the learner's confidence over time, as
 more observations are requested

Optimal decision policy for timehomogeneous problems

Bellman equation over belief states:

$$
u\left(\boldsymbol{b}_{t}\right)=r\left(\boldsymbol{b}_{t}\right)+\max _{a_{t}} \sum_{\boldsymbol{b}_{t+1}} u\left(\boldsymbol{b}_{t+1}\right) P\left(\boldsymbol{b}_{t+1} \mid a_{t}, \boldsymbol{b}_{t}\right)
$$

"Optimal" policy: all the observations are front loaded...

Humans don't do this...

(Tversky \& Edwards 1966)

Optimal policy: all observations are "front loaded"...

0000000 В В В В В В В В В В В В В В В В В В

Humans don't do this...

(Tversky \& Edwards 1966)

Optimal policy: all observations are
"front loaded"...

Typical human pattern shows switching: only some observations get front loaded..

... so either we're stupid or we are solving a different problem

Optimal decision policy for* timeinhomogeneous problems

Older observations lose relevance, confidence decays, and the MDP looks more human-like

This pattern makes sense if the agent assumes that reward contingencies change over time

POMDP analysis predicts a qualitative shift in the observation pattern

Dynamic environments force a shift from observe to bet earlier... but switch back often

So we ran some experiments... What do humans do?

(614 participants on MTurk)

Probability of making an observation as a function of trial number, in a static environment

Probability of making an observation as a function of trial number, in a dynamic environment

The difference between the two is kind of consistent with the POMDP analysis, but at first it's not convincing

(Methodological control: in some instances the stimulus sequences were identical, and the effect still occurs driven solely by people's
expectations...)

But not if the only difference is the instruction set

... people need some experience to work out what "static" vs "dynamic" really means here, but a single game is sufficient

What strategies do people follow and how do they adjust them?

You could ask?

(different experiment, after game I, static only)

People don't front load their observations, and they (mostly) know that

They recognise that front loading is optimal for the task and claim that's what they'll do next time...

And they do!
 (back to the original expt)

Static

... but only when relevant

Static

Dynamic

Estimating individual subject decision policies

(using simpler evidence accumulation models based loosely on drift diffusion models)
(a) Static Condition $\alpha=0.01$

One subject doing a static task

(a) Static Condition $\alpha=0.01$

Someone solving a dynamic problem

There's considerable variability...

There are systematic patterns: the policies have collapsing bounds (finite horizon) and evidence decay (dynamic world)

People learn the parameters of the task environment?

What to make of this?

One shot structure learning?

No idea what to do... so use default strategy

One shot structure learning?

What kinds of "task models" do people use?
(Towards a richer class of explore exploit dilemmas)

Everyday life motivates many different variants on sequential decision problems

Learning the value (or irrelevance) of novelty

Sequential decision making in a reactive environment

Contextual bandits - learning to use stimulus features to guide choices

Each task seems* to show rapid strategy adaptation after a single short game

(* preliminary)

Which problem am I solving? Rule re-use across tasks supports rich transfer? Priors over environments?

	OB I	OB2	SB	VBI	VB2	PK	CoB	CuB
Changing rewards								
Reactive environment								
Allows I/R separation								
Option turnover								
Predictive features								

Thanks!

Ben Newell
Christin Schulze
Sean Tauber
Dan Bennett
Nathaniel Phillips
Michael Lee
Amy Perfors
Keith Ransom
Wouter Voorspoels
Drew Hendrickson

Australian Government
Australian Research Council

(Quick sanity check - model fits)

Randomly generated data licence weak inferences
\qquad
 licence strong inferences

Effect of sample size in simple generalisation depends on sampling assumption

Learner's theory of the data generating mechanism induces qualitative shifts in reasoning

Back to the puzzle...

Human RL needs to infer which model to apply in which context, solve problems with large state spaces, using limited computational resources and with minimal training data. How is this done?

Answer? Flexible re-use of old knowledge?

- Get closest to 100 , or 300 , or 1000 , or 3000 , or any level, without going over.
- Beat your friend, who's playing next to you, but just barely, not by too much, so as not to embarrass them.
- Go as long as you can without dying.
- Die as quickly as you can.
- Pass each level at the last possible minute, right before the temperature timer hits zero and you die (i.e., come as close as you can to dying from frostbite without actually dying).
- Get to the furthest unexplored level without regard for your score.
- See if you can discover secret Easter eggs.
- Get as many fish as you can.
- Touch all the individual ice floes on screen once and only once.
- Teach your friend how to play as efficiently as possible.

Lake, Ullman, Tenenbaum \& Gershman (in press). BBS

How do people acquire new knowledge?

(categorisation \& reasoning)

How do we make choices

 in an uncertain world?(judgment \& decision making)

Sequential decision problems in an uncertain environment: people need to learn a model of the world and then work out how best to make use of it!

How do we make choices in an uncertain world?

(judgment \& decision making)

Welsh \& Navarro (2012). Org.
Behavior \& Human Dec. Making

How do we make choices in an uncertain world?

(judgment \& decision making)

Navarro \& Perfors (201 I). Psych Review
Hendrickson, Perfors \& Navarro (2016) Decision

