Learning the structure of an
explore-exploit dilemma

Dan Navarro



A puzzle

Human RL needs to infer which model to apply in which context,
solve problems with large state spaces, using limited computational
resources and with minimal training data in any one context. How!




My decision making task this morning

Go to a kids party!?




My decision making task this morning

Attend a decision

Go to a kids party!? .
neuroscience talk!?




Choices vary in many respects

Immediately rewarding, not
intellectually taxing,
emotional competence
required...

Probably long term
rewarding, high cognitive
load, not emotionally
difficult...




My direct experience is hon-existent

So I'm necessarily

This choice problem constructing a model on
doesn’t actually arise very > the fly of what might
often happen based on partially-

relevant data

(... decision making requires inductive generalisation)



How do people
acquire new
knowledge!

(categorisation & reasoning)



How do people
acquire new
knowledge!

(categorisation & reasoning)

What kind of prior biases shape
the acquisition of new
knowledge!

(a) prior distribution over (c) posterior distribution over
CRPs supplied by the learner CRPs inferred from data

S— (L)}
" I..- .lI.

(¢) estimated probability
of a new category

P(new|0,m)

(b) frequency table

provided by the (d) probabilit
y of a new
observed exemplars, n category according each
possible CRP

NN

Pas Foo 7?7

Which category does this belong t0?
Pas Foo New




How do people
acquire new
knowledge!

(categorisation & reasoning)

What old knowledge do people
use to guide inferences?

One training item (r = 0.93) Two training items, (r = 0.76)
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How do people
acquire new
knowledge!

(categorisation & reasoning)

What computational strategies
do people use to simplify
complex problems!?




How do people
acquire new
knowledge!

How do we make choices
in an uncertain world?

(judgment & decision making)
(categorisation & reasoning)

Sequential decision tasks
under uncertainty




How do people
acquire new
knowledge!

How do we make choices
in an uncertain world?

(judgment & decision making)
(categorisation & reasoning)

Learner’s theory of the data
generating mechanism induces
qualitative shifts in reasoning
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Learner’s theory of the data
generating mechanism induces
qualitative shifts in reasoning

| 6=0.11 6=0

The evidentiary value of the
same new fact points in
opposite directions depending
on how it was selected




Decision
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Stay Switch Indifferent

Human behaviour in an
(extended) Monty Hall
pbroblem depends on social

intent of the host

Learner’s theory of the data
generating mechanism induces
qualitative shifts in reasoning

Perfors, Navarro, Donkin & Benders
(under review). Cognition



Puzzle, reframed:

Where does the theory of (model for) the
decision problem come from!

2 Chapter 1| Probabdbty Modeh
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Building Machines That Learn and Think Like People
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Abstract

Recent progress in artificial intelligence (Al) has renewed interest in building systems that
learn and think like people. Many advances have come from using deep neural networks trained
encd-to-end in tasks such as object recognition, video games, and board games, achieving perfor-
mance that oquals or even beats humans in some respects. Despite their biological inspiration
and performance achievements, these systems differ from human intelligence in crucial ways.
We review progress in cognitive science suggesting that truly buman-like learning and thinking
machines will have to reach beyond current engineering trends in both what they bearn, and bow
they leamn it. Specifically, we argue that these machines should (a) bulld causal models of the
world that support explanation and understanding, rather than merely solving pattern rocog-
nition problems; (b) ground learning in intuitive theories of physics and psychology, to support
and enrich the knowledge that is learned; and (¢) harness compositionality and learning-to-learn
to rapldly acquire and generalize knowledge to new tasks and situations. We suggest concrete
challenges and promising routes towards these goals that can combine the strengths of recent
neural network advances with more structured cognitive models.
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IAIN M.
BANKS

THE PLAYER
 OF GAMES

“You've spent all your life learning
games; there can’t be a rule, move,
concept or idea in [super complicated
game] you haven’t encountered ten
times before in other games; it just
brought them all together.”



The players of games







Trading-off information and reward



The tiger problem

(as per every text on POMDPs)

Actions!

Make an observation: Listen at the door for
the sounds of a tiger

Take a bet: Open a door and see
what’s behind it

ay 10 =0, (60%) a8y 10 =0 (40%)
og (40%) og (60%)

FIGURE 16.3  The tiger POMDP. The subject does not know if she
is in state s, where the left door a, is dangerous, or state sy, where
the right door ag is dangerous. Only by waiting (ay) and accumulat-
ing evidence about which state obtains is it safe to choose a door.



Information versus reward problems for
online workers...

iment and vote on an article. Easy!

gquester: ¢  Product Search HIT Expiration Date:
communicativity: S 1.00 / 5 I:
generosity = O T ] ee—

» website cc fairness P s e 2.86 /5
romptness | [T 2.90 / 5

guester: eeme peren on Date
What do these scores mean?

d:

Scores based on 7 reviews

ke YouTube pganort your experience with this requester »

guester: v | Mr_movie yuote iy expiracon Date:
Do some work: Tag some images, and Do your research: Check out Turkopticon (etc.), read
eventually get a reward when the the reviews for the requester. Maybe check out Turk and
requester pays. If they pay. No see if there are any better jobs on offer?
immediate knowledge... but possibly a No immediate reward... only information

reward



Information versus reward problems for
resource companies...

Invest in exploitation: Dig some
mines, sink some wells, build some
factories. Doesn’t teach us much about
the world (initially), but it’s how the
company makes money

Invest in exploration: Send out geologists,
hire JDM researchers to teach geologists
how to do statistics, etc. Doesn’t sell any

barrels of oil, but identifies potentially
profitable actions



A simple experimental task
(adapted from Tversky & Edwards |966)



The observe or bet task

This is a “blox” machine



It has a blue light and a red light

These lights flash
intermittently.



A

r? 2Y Py

2y 2y

One light tends to come on
more often than the other.
You don’t know which

A




/ . .

Observe 'Guess Blue| |Guess Red

At every point in time, you

can make an observation or

bet on which outcome will
OCCur...



If you OBSERVE, you get to see
which light turns on

°

U 9

... but you receive no reward

(information only)



If you BET (on blue) you receive a point (+1) if you're
correct, and lose if you're wrong (-1).

77

But the outcome is hidden from you until the
end to the task, so you can’t learn from this trial

(delayed reward only)



The task

® Win as many points in a 50 trial “game”

® Play a series of 5 games

® Two kinds of environment
® Static: Outcome probabilities are fixed

® Dynamic: Outcome probabilities undergo discrete
changes



How does a rational agent allocate
behaviour in this task!?



A simple Bayesian analysis of the
beliefs the agent holds

Red more likely Blue more likely
Prior beliefs about the probability
that the light will be blue

P(6)

0.0 0.2 0.4 0.6 0.8 1.0
Probability of a Blue Light




Confidence in Blue = 75%

Posterior beliefs given a single
OBSERVE action on trial |

P(0|x) o< P(x|0)P(0) —

0.0 0.2 0.4 0.6 0.8 1.0

Probability of a Blue Light



Confidence in Blue = 50%

0.0 0.2 0.4 0.6 0.8 1.0

Beliefs updated sequentially: today’s
posterior is tomorrow’s prior

P(0|x:) < P(x¢|0)P(0|x:_1)

Probability of a Blue Light




Confidence in Blue = 69%

0.0 0.2 0.4 0.6 0.8 1.0
Probability of a Blue Light



1.0

0.8

Confidence

0.4

0.2

Plot the learner’s confidence over time, as
more observations are requested
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Confidence
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Confidence

0.6 0.8 1.0

0.4

0.2

0.0

Trial Number

12




Confidence

0.4

0.8 1.0

0.6

0.2

0.0

6 8

Trial Number

10

12




Confidence

0.4

0.8 1.0

0.6

0.2

0.0

6 8

Trial Number

10

12




Optimal decision policy for time-
homogeneous problems



< “Bet blue”
N - \
Q
-
2 o - “Observe”
S
L
o -
¥ - Bet red
| | | | | |
0 10 20 30 40 50
Trial Number

Bellman equation over belief states:

u(be) = r(be) + max > u(bey1)P(bryalar, by)

be 1



Evidence

— e
A N
® o0

Observe first...

A

| | | |

0 10 20 30
Trial Number

40

50



Evidence

... then bet (blindly) for the rest

Trial Number

“Optimal” policy: all the
observations are front loaded...



Humans don’t do this...
(Tversky & Edwards 1966)

Optimal policy: all observations are
“front loaded”...

0000000 BBBBBBBBBBBBBBBBBB




Humans don’t do this...
(Tversky & Edwards 1966)

Optimal policy: all observations are
“front loaded”...

0000000 BBBBBBBBBBBBBBBBBB

Typical human pattern shows switching:
only some observations get front loaded...

0000000OBBBBBBOOBBBBBBOBBB

... so either we're stupid or we are
solving a different problem



Optimal decision policy for™ time-
inhomogeneous problems

(* a specific class of)



Evidence

10

20 30

Trial Number

40

50



Older observations lose relevance, confidence
decays, and the MDP looks more human-like

< - “Bet blue”

Evidence

Trial Number



This pattern makes sense if the
agent assumes that reward
contingencies change over time




POMDP analysis predicts a qualitative
shift in the observation pattern
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Dynamic environments force a
shift from observe to bet
earlier... but switch back often

0.4

0.2

Expected Difference
0.0
|

-04 -0.2

Trial Number



S0 we ran some experiments...
What do humans do!

(614 participants on MTurk)
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Game 1

Probability of making an as a
function of trial number, in a static environment
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' Difference

[ S B S
0 10 20 30 40 S0

The difference between the two is kind of
consistent with the POMDP analysis, but
at first it’s not convincing

— |
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T, | perfectly after a single play through
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(Methodological control:in some instances the
stimulus sequences were identical, and the effect
still occurs driven solely by people’s
expectations...)

Game 3, Version 2 Game 5, Version 3

-04 -02 00 02 04

[
0 10 20 30 40 50

Trial Number

] I 1 I I 1 1 ] | ] I |
0 10 20 30 40 50 0 10 20 30 40 50
Trial Number



But not if the only difference
is the instruction set

02~

Difference
(=]
o

-04 -02 00 02 04

~-02 - r
0 10 20 30 40 50

Trial Number

0.4 -
I

... people need some experience to work out
what “static” vs “dynamic” really means here, but a
single game is sufficient



What strategies do people follow and
how do they adjust them!



Number of Participants

You could ask?

(different experiment, after game |, static only)

-l
o
1

—
o
1

People don’t front load their
observatlons, and they
(mostly) know that

Fr om Load From Load Dlslnbulo
Observati



f Participa

Number 0

They recognise that front loading is
optimal for the task and claim that’s
what they’ll do next time...

Maximize Pay Next Time

] 1 ] ]
stribute Front Load Distribute Front Load Distribute
Ooservation Strategy

s



And they do!

(back to the original expt)

Static
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Parﬁcgants who Front;l.oad Exactly

o
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| 1 [ '
1 2 3 4

5
Game Numper



... but only when relevant

Dynamic

Dynamic Condition



Estimating individual subject decision
policies

(using simpler evidence accumulation models
based loosely on drift diffusion models)



(a) Static Condition a = 0.01

r T T T T 1
0 10 20 30 40 50
Trial Number

One subject doing a
static task



(a) Static Condition a = 0.01

q Someone solving a
¢ dynamic problem

Trial Number

I | | L] 1
0 10 20 30 40 50
Trial Number



There’s considerable variability...

(a) Static Condition a = 0.01 (b) Static Condition a = 0.01 (c) Static Condition a = 0.02 (d) Static Condition a = 0.08

.
’ Al 1 L) ] L L] L] ' 1 L] 1] L] L] 1}

T 1 1 1 A 1 T 1
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Trial Number Trial Number Trial Number Trial Number

(e) Dynamic Condition « = 0.01 (f) Dynamic Condition e = 0.09 (g) Dynamic Condition a = 0.25 (h) Dynamic Condition a = 0.25

f 1 1 ) I | | J ] ' 1 ) J

0 10 20 30 40 50 0 10 20 30 40 50

8_

0 10 20 30 40 50 0 10 20 30 40
Trial Number Trial Number Trial Number Trial Number



There are systematic patterns:
the policies have collapsing bounds (finite horizon) and
evidence decay (dynamic world)

Evidence Can Decay No Evidence Decay
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Evidence Decay Rate
0.00 0.05 0.10 0.15 0.20

People learn the parameters of the
task environment!?

e.g., O Static
O Dynamic
| l
- ﬁ ---1-----I-ﬂ1-T-F;=“_--+-h--> Static

Game1l Game2 Game3 Gamed4 Gameb



What to make of this?



One shot structure learning?

No idea what to do...
so use default strategy



One shot structure learning?

irrelevant

relevant

We need one play through to work out
which “kind” of rule set is required!?

° PamcgmsmoFméLoaoExww s
] H



What kinds of ““task models”
do people use?

(Towards a richer class of
explore exploit dilemmas)



should | be
curious about
this?

what skills should |
invest in?

Everyday life
motivates many
different variants

on sequential new options’

decision problems —

h\>

when do | watch and

when should | when do | act?
hedge my bets?

how do | use old
knowledge to evaluate




Learning the value (or
irrelevance) of novelty

should | be
curious about
this?

Sequential decision
making in a reactive
environment

what skills should |
invest in?

Everyday life

Contextual .
motivates many how do | use old bandits - learning M
different variants knowledge to evaluate to use stimulus
on sequential new options? > features to guide
choices

decision problems —

h\‘ Peeks and keePs: Blending |

when do | watch and
when should | when do | act? observe-or-bet problems

hedge my bets? with bandit problems

Vanishing bandits: Keeping doors
open in uncertain worlds




Each task seems™ to show rapid strategy

adaptation after a single short game
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Which problem am | solving? Rule re-use across tasks
supports rich transfer? Priors over environments?

OBl OB2 VBI VB2 PK CoB CuB
Changing
rewards
Reactive
environment

Allows I/R
separation

Option
turnover

Predictive
features




Thanks!

Ben Newell
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Drew Hendrickson



(Quick sanity check - model fits)

Game 1 Game 2 Game 3 Game 4 Game 5
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R.andomly gengrated data
licence weak inferences

Helpfully generated data
licence strong inferences — ;

Effect of sample size in simple
generalisation depends on
sampling assumption

Learner’s theory of the data
generating mechanism induces
qualitative shifts in reasoning




Back to the puzzle...

Human RL needs to infer which model to apply in which context,
solve problems with large state spaces, using limited computational
resources and with minimal training data. How is this done!




Answer! Flexible re-use of old knowledge!

Get closest to 100, or 300, or 1000, or 3000, or any level, without going over.

Beat your friend, who’s playing next to you, but just barely, not by too much, so as not to
embarrass them.

Go as long as you can without dying.
Die as quickly as you can.

Pass each level at the last possible minute, right before the temperature timer hits zero and
you die (i.e., come as close as you can to dying from frostbite without actually dying).

Get to the furthest unexplored level without regard for your score.
See if you can discover secret Easter eggs.

Get as many fish as you can.

Touch all the individual ice floes on screen once and only once.

Teach your friend how to play as efficiently as possible.




How do people
acquire new
knowledge!

How do we make choices
in an uncertain world?

(judgment & decision making)
(categorisation & reasoning)

Sequential decision problems in an uncertain
environment: people need to learn a model of the
world and then work out how best to make use of it!




How do we make choices
in an uncertain world?

(judgment & decision making)

How do people evaluate the
quality of evidence!?

75¢

O Human Data
X - Model Predctons

Number of Reasons to Distrust

Welsh & Navarro (2012). Org.
Behavior & Human Dec. Making



How do we make choices
in an uncertain world?

(judgment & decision making)

D||2]| 4

n what way do the
statistics of the
decision problem
matter?




