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Abstract 
The extent to which we generalize a novel property from a 
sample of familiar instances to novel instances depends on the 
sample used. In these experiments, we are interested in two 
sample characteristics: number of types (discrete entities) and 
number of tokens (copies of the same entity) that share a novel 
property. Existing studies permit separate and conditional 
hypotheses about the effects of adding types and tokens, but no 
study has examined the effects of both variables on 
generalization stimuli varying in similarity. We find that 
adding types broadens generalization to similar stimuli, but 
tightens generalization to dissimilar stimuli. Adding tokens 
does not affect generalization, but adding repetitions that are 
framed as types produces some tightening. Implications for 
models of inductive reasoning are discussed. 

Keywords: inductive reasoning, categories, concepts, 
Bayesian models 

Introduction 
Imagine you are hiking with an ornithologist friend who 

points to several birds and tells you that these birds have 
gabbro bones. The next day, you hike alone and want to use 
your newly-gained knowledge to identify other birds with the 
same property. How will you decide which birds have gabbro 
bones? How far will you generalize? This is an example of a 
property induction problem, and the answers to these 
questions will depend on precisely which examples you were 
initially shown.  

In this paper, we examine how people’s inductive 
generalizations are shaped by two sample characteristics—
the number of types and number of tokens. In this context, 
“types” are discrete entities that provide distinct information 
(e.g., a green parrot and a red parrot are different entities that 
represent two distinct types), whereas “tokens” are copies 
that provide redundant information (e.g., observing the same 
green parrot twice represents two tokens of the same type). In 
particular, our goal is to see whether types and tokens have 
analogous effects on the breadth of property induction. 

The effect of adding types? 
Traditional models of inductive reasoning typically predict 

that adding types produces a monotonicity effect—increasing 
the number of premise exemplars that possess a property 
increases the likelihood of generalizing that property to a new 
conclusion exemplar within the same category (see Hayes & 
Heit, 2017, for a review). In the classic similarity-coverage 
model (Osherson, Smith, Wilkie, López, & et al, 1990), this 
effect arises because adding within-category exemplars 

increases the similarity between the premise category and a 
superordinate conclusion category that includes the premises. 

In contrast, Bayesian models of property generalization 
(e.g., Navarro, Dry, & Lee, 2012; Tenenbaum & Griffiths, 
2001) often predict that adding types also elicits a non-
monotonicity effect: increasing the number of premise 
exemplars can reduce the likelihood of generalizing the 
property to novel exemplars, especially when those 
exemplars belong to a different category (e.g., Ransom, 
Perfors & Navarro 2016). When the reasoner observes more 
exemplars within a category that have the property, it 
strengthens the hypothesis that this category corresponds to 
the true extension of the novel property. The reasoner’s 
beliefs thus converge to the smallest psychologically 
plausible category that contains the observed items. This 
phenomenon is known as the size principle (Tenenbaum & 
Griffiths 2001). Importantly, the size principle requires the 
reasoner to assume strong sampling, in which premises are 
selected from the set of objects that possess the property, 
rather than randomly selected. 

Figure 1 illustrates this principle. For example, observing 
one green parrot with gabbro bones (the filled circle) results 
in moderately high generalization ratings for new exemplars 
that are highly similar to green parrots. Generalization ratings 
then decrease smoothly as a function of decreasing similarity 
(solid line). Conversely, observing four different green 
parrots (the empty squares) strengthens the belief that similar 
green parrots have gabbro bones, but weakens the belief that 
other dissimilar birds have gabbro bones (dashed line). 

 
 
Figure 1: A Bayesian model of generalization predicts that 
increasing number of sample “types” from one to four will 
increase property generalization for high-similarity (“High 
Sim”) test stimuli, but decrease generalization for medium- 
and low-similarity test stimuli. 
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The non-monotonicity prediction is significant because 
this phenomenon is not predicted by similarity-based models 
(e.g., Osherson et al., 1990). The empirical evidence for non-
monotonicity however, has been mixed. When introducing 
the relevance theory of property induction, Medin, Coley, 
Storms, and Hayes, (2003) found evidence for non-
monotonicity. For example, a property shared by Swedes, 
Finns, Danes, and Norwegians was less likely to generalize 
to Italians, than a property shared only by Swedes and Finns. 
This is because the additional types reinforced and made 
more relevant the property of “Nordic countries”, 
subsequently weakening the strength of induction to Italians. 
By way of contrast, Fernbach (2006) failed to find evidence 
of non-monotonicity for biological categories such as lions 
and tigers (c.f. Ransom et al 2016). Participants generally 
preferred to generalize on the basis of a larger sample (more 
types) rather than a smaller sample. 

An important limitation of these studies (Fernbach, 2006; 
Medin et al., 2003) is that they assessed generalization using 
a single conclusion category. This prevented them from 
testing the Bayesian predictions that adding types may 
increase generalization to instances that are similar to the 
sample, while also decreasing generalization to dissimilar 
instances. Hence, the first aim of our experiments was to 
examine the effect that adding types has upon property 
generalization to a range of novel exemplars that represent 
biological kinds and that vary in similarity to the sample of 
premise exemplars. To do so, we manipulated number of 
types of bird and flower exemplars (from one to four), and 
examined generalization to other birds or flowers 
representing four similarity levels (target, high, medium, and 
low). As illustrated in Figure 1, we predicted a monotonicity 
effect for high-similarity stimuli, but a non-monotonicity 
effect for low-similarity stimuli. 

The effect of adding tokens? 
This first aim reflects the assumption of most property 

induction models that any additional exemplar added to an 
evidence sample is a discrete type that provides novel 
information. However, in both experimental and real-world 
contexts, new exemplars can seem very similar to old 
exemplars. In such contexts, it is not clear whether new 
instances will be perceived as new types or as new tokens of 
the same type. This distinction is important because, unlike 
types, new tokens provide no new information to the 
reasoner. For example, reading a second copy of a news story 
will not provide you with any additional information beyond 
the first copy (although it may increase your belief in its 
“truthfulness”; see Hasher et al., 1977). Thus, what 
informational value do people assign to new tokens, and how 
does this affect the breadth of generalization? 

Little work has examined the effect of adding tokens on 
property generalization. A naïve interpretation of Bayesian 
theories of generalization is to treat all additional exemplars 
as discrete types, on the assumption that sampling the same 
entity twice provides new statistical evidence. However, 
other approaches are possible. Types and tokens are treated 

differently in Bayesian models of natural language 
production (Goldwater, Johnson, & Griffiths, 2006), object 
identification (Kemp, Jern, & Xu, 2009), and categorization 
(Navarro & Kemp, 2017). As such, it is not obvious a priori 
which approach is most appropriate to property induction. 

To our knowledge, no study has examined the effect of 
adding tokens on property induction specifically, and the 
literature in related tasks has produced heterogeneous 
findings. In category learning, adding repetitions of the same 
exemplar can affect the likelihood that a new exemplar will 
be assigned to that category. For example, participants treated 
repeated presentations of the same color stimulus as separate 
instances when categorizing new colors (Nosofsky, 1988), 
and participants categorized new fish by relying on the 
exemplar fish that were presented most frequently (Barsalou, 
Huttenlocher, & Lamberts, 1998). However, in an artificial 
grammar learning task, Perfors, Ransom and Navarro (2014) 
found that generalizations about a novel grammar were 
sensitive to the number of distinct types, but—somewhat 
unexpectedly—were unaffected by the number of tokens.  

With this in mind, our second aim was to examine how 
adding tokens affects people’s willingness to make inductive 
inferences about a novel property. We manipulated number 
of observed tokens from one to four in Experiment 1, and two 
to six in Experiment 2. If participants treat repeated 
exemplars as types with novel informational value, we should 
see the same patterns as observed from our number-of-types 
manipulation. Conversely, if participants treat repeated 
exemplars as redundant tokens, then property generalization 
should be unaffected by additional tokens. 

Experiment 1 

Method 
Participants. 1100 residents of the United States of America 
recruited from Mechanical Turk (MTurk). Data was lost for 
107 participants due to a server overload, and 55 participants 
were excluded for failing an attention check question. The 
final sample size was 938 (48% female, median age = 34). 
Participants were paid $1.67USD for the ten-minute task. 
 
Table 1: The 11 exemplar sets in Experiment 1 include every 
possible frequency table consisting of 4 or fewer tokens of 
the first type 

 
 

Design and Materials. The between-subjects design 
manipulated exemplar set, with each set varying in number 
of types and number of tokens. As shown in Table 1, there 

 1 type 2 types 3 types 4 types 

1 token 1 11 111 1111 

2 tokens 2 21, 22 211  

3 tokens 3 31   

4 tokens 4    



were 11 exemplar sets, representing every possible way to 
distribute four or fewer tokens of the first type among four or 
fewer types. Exemplar sets are labeled in terms of the 
frequency table they correspond to. For example, in the “211” 
condition the sample was comprised of four instances: two 
tokens of the first type, one token of the second type, and one 
token of the third type (see Figure 2). Each participant was 
shown one exemplar set, chosen randomly. 
 

Figure 2: Exemplars shown in the 211 condition, in the bird 
trial of Experiment 1 
 
Procedure. Participants completed one “bird trial” and one 
“flower trial” in counterbalanced order. In each trial, 
participants were asked to imagine they are researching how 
common a novel biological property (gabbro bones or nelase 
enzymes) is within a biological category (birds or flowers) on 
a newly-discovered island. Participants were told they would 
observe between one to four exemplars that have the 
property. The cover story made it clear that this sample could 
include types (e.g., photographs of different birds with the 
same novel property) or tokens (e.g., multiple photographs of 
the same bird). Type/token status was reinforced by the use 
of distinct or identical alphanumeric labels consisting of two 
letters and four digits (see Figure 2 for examples).  

Participants were then presented with one of the sample 
exemplar sets from Table 1. Piloting showed that all sample 
stimuli were rated as having similar levels of typicality of 
their respective categories (bird or flower). Exemplars were 
displayed with their alphanumeric IDs, cumulatively, and 
from left to right on the screen. Each exemplar appeared 
onscreen for eight seconds before the next appeared.  

After all sample exemplars were presented, participants 
were asked to generalize the novel property to other 
categories on the island (see Figure 3). There were seven 
generalization stimuli: one stimulus presented during training 
(hereafter the “target” stimulus); and two stimuli each of 
high, medium, and low similarity to the training stimuli, as 
determined in pilot similarity ratings. Each generalization 
stimulus was shown individually, in randomized order, with 
the instructions “Based on what you have learned so far, how 
likely is it that this bird has gabbro bones/flower has nelase 
enzymes?” Participants responded on a ten-point scale 
(where “1 = Definitely does not” and “10 = Definitely does”). 

 

Figure 3: Example generalization stimuli for the bird trial 

Results and Discussion 
Number of types and tokens were coded as categorical 
variables. Mean generalization ratings were coded as 
continuous variables, but the four generalization categories 
were discrete. We averaged generalization ratings across bird 
and flower trials (as they did not differ), and across the two 
stimuli within each of the high-, medium-, and low-similarity 
generalization categories. Analyses were performed using the 
BayesFactor package in R (Morey & Rouder, 2015) to 
compare ANOVA models. 

Before discussing the between-subjects effects of adding 
types and adding tokens, we note that within-subjects 
generalization ratings decreased with decreasing similarity 
(BF10 > 1000). The large positive Bayes factor indicates 
strong support for the alternative hypothesis of a difference 
between generalization categories, relative to the null 
hypothesis of no difference. This is an unsurprising finding 
predicted by both Bayesian and non-Bayesian models. 

 
Crossover effect from adding types. We begin with the 
effect of adding types, in which all exemplar sets with the 
same number of types are grouped together (e.g., “1 type” 
includes the 1, 2, 3 and 4 conditions, “2 types” includes 11, 
21, 22 and 31, etc.). As shown in Figure 4, adding types 
increased property generalization ratings for items with high 
similarity to trained items, but decreased generalization 
ratings for medium- and low-similarity items (BF10 > 1000 in 
all cases). We describe this pattern of monotonicity for the 
high-similarity category and non-monotonicity at the 
medium- and low-similarity categories as a crossover effect.  
 

 
Figure 4: Adding types produces a crossover effect. In this 
and subsequent figures, error bars represent standard errors. 
 

The effect of adding types was then examined for each level 
of numbers-of-tokens of the first type. The crossover effect 
was strongest when comparing 1→2→3→4 but was also 
observed for the 2→21→211 and 3→31 comparisons. 

The monotonicity effect for the high-similarity category is 
consistent with our predictions about generalization to 
similar, within-category exemplars. Those who observed a 
sample with more types interpreted this as positive evidence 
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for the hypothesis that the property generalized to highly 
similar types—and thus gave higher generalization ratings. 

Conversely, observing more types with the property was 
also seen as a signal that the property only applies to similar 
types—thus, decreasing generalization ratings for new types 
with medium and low similarity to the sample. This non-
monotonicity effect is consistent with predictions made by 
Bayesian strong sampling models (Tenenbaum & Griffiths, 
2001), and the size principle that these models instantiate. 

 
Null effect of adding tokens. Figure 5 shows the effect of 
adding new tokens on property generalization, with all 
exemplar sets with the same number of tokens of the first type 
grouped together. Adding tokens did not affect generalization 
ratings to the target category (BF10 = .008), nor to the 
medium- (BF10 = .061), or low-similarity (BF10 = .006) 
categories, but did cause tightening (i.e., lower generalization 
ratings) for the high-similarity category (BF10 > 1000).  
 

 
Figure 5: Adding tokens did not affect generalization ratings 
beyond the 1 token, 1 type condition. 
 

Looking at the token effect for each level of number-of-
types reveals that adding tokens ceased to have an effect 
beyond the 1→2 comparison. The added token from 1→2 
tightened generalization for high-similarity (BF10 = 7.1) and 
medium-similarity categories (BF10 = 782). However, adding 
tokens produced a null effect with more than two tokens or 
more than one type (BF10 < 1 in all cases). Thus, the main 
effect for the high-similarity category appears to be almost 
entirely driven by the 1→2 case. The overall null effect 
suggests that participants generally viewed repeated 
observations of an exemplar as having little effect on property 
generalization.  

Experiment 2 
Experiment 1 found that adding tokens had little effect on 

generalization, suggesting participants were appropriately 
discounting the informational value of repeated exemplars. 
However, it is also possible that participants were simply 
ignoring the visually-identical repetitions, without 
considering whether repetitions should be treated as types or 
tokens. In order to clarify participants’ ability to discriminate 

between types and tokens, Experiment 2 again examined the 
effect of adding tokens (from this point, we use the term 
“exemplars” to avoid confusion), but additionally 
manipulating whether repeated exemplars were explicitly 
described as tokens (i.e., repeated presentations of the same 
exemplar) or as types (i.e., new presentations of different 
exemplars). If participants are sensitive to the different 
informational value of types and tokens, generalization 
patterns will differ between the two groups. Specifically, 
adding observations should produce a null effect in the 
repetition-as-token conditions, and perhaps an attenuated 
crossover effect in the repetition-as-type conditions. Note 
that Experiment 1 used images of different parrots, whereas 
Experiment 2 used edited images of the same parrot, thus we 
do not expect a perfect replication of the crossover effect. We 
also predicted that the divergent effect on generalization will 
increase as the number of types or tokens increases—thus, we 
test an increased range of two to six exemplars.  

Method 
Participants. 500 residents of the USA recruited from 
MTurk. Three participants had incomplete data, and 11 were 
excluded for failing the attention check question. The final 
sample size was 486 (52% female, median age = 33). 
Participants were paid $1.00USD for the six-minute task. 
 
Design. The study used a 5 (number of observations: 2, 3, 4, 
5, 6) x 2 (repetition type: repetition-as-token, repetition-as-
type) between-subjects design, resulting in ten conditions. 
All participants were exposed to one type. The dependent 
variable was the same as in Experiment 1. 
 
Materials and Procedure. This study used only bird stimuli 
(not flowers). Training stimuli were reflected and/or rotated 
versions of the first bird image used in Experiment 1 (i.e., the 
“Target” bird shown in Figure 3). Image transformations 
were used to increase the plausibility of the repetition-as-type 
cover story (i.e., that repeated exemplars represent discrete 
entities). Participants in repetition-as-token conditions were 
told that they may see multiple photographs of the same bird 
with the same ID number (as per Experiment 1). Participants 
in the repetition-as-type conditions were told that the same 
bird was never photographed more than once, and therefore 
repeated images represent different birds with different ID 
numbers. The training and test procedure was the same as in 
Experiment 1, except for an additional check of the repetition 
type manipulation. At the end of the experiment, participants 
in the repetition-as-token (repetition-as-type) condition were 
asked to rate “Based on the birds you saw, how much did you 
believe that some of the bird pictures were (not) repetitions 
of the same bird?” (1 = “Definitely not repetitions” and 10 = 
“Definitely repetitions”). 

Results and Discussion 
Responses to the repetition question confirmed that this 
manipulation worked as intended. Participants in the 
repetition-as-token conditions mostly believed birds were 
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repetitions of the same bird (mode = 10, M = 7.66, SD = 3.13), 
while participants in the repetition-as-type conditions mostly 
believed birds were not repetitions (mode = 1, M = 4.88, SD 
= 3.31). A Bayesian t-test provided very strong support for 
the alternative hypothesis that these means were different, 
BF10 > 1000.  

Figure 6 shows the effect of adding exemplars separately 
for the two repetition type conditions. For repetition-as-token 
conditions (top panel), adding exemplars did not affect 
generalization at any similarity level (BF10 ranged from .012 
to .063), replicating the null effect in Experiment 1. For the 
repetition-as-type conditions (bottom panel), adding 
exemplars did not affect generalization to the target category 
nor did it have any effect for the medium-similarity and low-
similarity categories (BF10 ranged from .090 to .554). There 
was positive evidence for a difference in how people 
generalized to the high-similarity category (BF10 = 5.50). 
Visual inspection suggests this is a tightening effect with 
generalization ratings decreasing as the number of types 
increases from 2→3→4 exemplars, but no effect is observed 
beyond that. This tightening resembles the tightening 
observed at medium- and low-similarity categories in 
Experiment 1.  

 

 

 
Figure 6: The effect of adding exemplars, in repetition-as-
token (top panel) and repetition-as-type (bottom panel) 
conditions. 
 

This pattern of results is different to Experiment 1, but may 
not be surprising given that the exemplars ostensibly 
depicting different birds in Experiment 2 were in fact visually 
identical. This lack of variability in the initial premise 
exemplar set may have caused the “high-similarity” 
generalization items in Experiment 1 to be treated as 
“medium-similarity” in Experiment 2. Regardless of the 
reason, Experiment 2 does provide suggestive evidence that 
the type/token status, even for identical-appearing exemplars, 
may affect how those exemplars are used in property 
induction. Adding exemplars when they are believed to be 
tokens of the same type had little effect, but adding the same 
exemplars as different types reduced generalization ratings—
at least for some stimuli.  

General Discussion 
Across two experiments we find that the breadth of property 
generalization can change quite substantially with the 
number of types, but not with the number of tokens. Adding 
types produced a crossover effect that is consistent with a 
Bayesian model of inductive generalization, while adding 
tokens produced a null effect that implies participants treated 
repeated exemplars as having little to no evidentiary value. 

The effect of adding types 
In Experiment 1 we found that adding visually distinct 

types increased generalization ratings to high-similarity 
stimuli (i.e., a monotonicity effect) but decreased ratings to 
medium- and low-similarity stimuli (non-monotonicity). The 
former effect is consistent with the similarity-coverage model 
but the latter is not. To produce non-monotonicity effects in 
this model, one would require decreased similarity or 
decreased coverage, neither of which arises naturally without 
adding auxiliary assumptions to the model. In our studies, we 
chose exemplars to ensure that adding types did not decrease 
maximal nor average similarity between observed items and 
generalization targets. In contrast, the non-monotonicity 
effect emerges naturally within a Bayesian approach to 
inductive generalization that assumes strong sampling, and 
thus predicts the generalization patterns depicted in Figure 1 
(Tenenbaum & Griffiths, 2001).  

Although previous research has shown that sampling 
assumptions in inductive generalization are somewhat 
malleable (Ransom, Perfors, & Navarro, 2016), our results 
suggest that people rely on something akin to strong sampling 
in “typical” property induction scenarios dealing with types. 
This finding broadly mirrors the results from Medin et al., 
(2003), though does not agree with findings by Fernbach 
(2006). The inconsistency between the current results and 
Fernbach (2006)’s findings may arise from our use of 
multiple generalization stimuli along a similarity gradient, 
compared to Fernbach (2006)’s use of one generalization 
exemplar. In light of our findings that non-monotonicity only 
occurs when reasoning outside the category of exemplars, it 
is possible that his single conclusion exemplar (raccoons) 
was not sufficiently dissimilar from the various sets of 
premise exemplars to demonstrate non-monotonicity.  
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The effect of adding tokens 
The effect of adding tokens has not previously been 

investigated in property induction. In Experiment 1, adding 
tokens did not change generalization at any similarity level. 
This null effect is consistent with Perfors et al. (2014), but 
inconsistent with other studies in which token frequency 
affects categorization of novel instances (Barsalou et al., 
1998; Nosofsky, 1988). Although these studies differ from 
ours in many ways, the most important differences are that: 
(1) we measured property induction as opposed to category 
learning, and (2) we clearly differentiated between types and 
tokens, leaving little room for participants to perceive tokens 
as types that provide novel information. On the first point, it 
is entirely possible that the relative effects of types and tokens 
differs in these different domains. However, it is also possible 
that participants in previous studies were simply unable to 
differentiate between types and tokens. Compared to our 
training set with a maximum of six exemplars representing 
four types, Barsalou et al. (1998) presented 30 exemplars of 
five different fish, while Nosofsky (1988) presented 48 
instances of 12 colors. Perhaps the relatively lighter cognitive 
load placed on participants in the present experiments 
facilitated the “rational” ignoring of redundant repetition.  

The effect of type/token framing 
To further investigate the extent to which participants 

attend to the relative informational value of types and tokens, 
in Experiment 2, we framed repeated exemplars as either new 
types, or new tokens of old types, while keeping visual 
information constant. Adding repetition-as-types decreased 
generalization to high similarity items, whereas adding 
repetition-as-tokens had no effect on generalization ratings 
(as per the null effect observed in Experiment 1). This 
suggests that people are sensitive to the difference in 
informational value between types and tokens even in this 
“pure framing” context—a sensitivity that many existing 
models do not explicitly accommodate. That being said, the 
effect size is modest and some degree of caution is warranted 
when interpreting this result.  

Future work 
Similarity-based models of induction cannot account for 

the crossover effect of adding types. Bayesian models can, 
but they fail to predict the null effect of adding tokens. Our 
results therefore point to the need for a Bayesian model of 
generalization that assumes strong sampling for types, while 
also accommodating a different sampling process for tokens. 
This might resemble Goldwater et al., (2006)’s adaptor 
grammar model that allows different generative processes for 
generating new types compared to copying an old one, or 
Navarro, Dry, & Lee (2012)’s model that allows for some 
mixture of strong and weak sampling, depending on the 
evidence presented. Exactly how you generalize gabbro 
bones on your next hike is therefore determined by whether 
you were shown types or tokens—and cannot be adequately 
predicted by current models. 
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