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Details of Modeling 

Constructing the Simple  Estimators 

In what follows, we describe how to construct the estimators used in the analysis of 

Experiment 1A and 1B. We focus in particular on the naive estimator (Equation 2 of the 

main paper), since the other estimators (Equations 3, 4 and 5) are minor modifications to 

this. To start with, note that (by definition) the expected value of θ is just the mean of the 

posterior distribution, 

 ∫=
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and if we treat the sample sizes n0 and n1 , as fixed (or, more precisely, as variables that are 

independent of θ) then by Bayes’ rule we can write: 
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where  P (θ)  denotes  the  prior  degree  of  belief  that  the  decision-maker  has  in  θ,  and 
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P (x0, x1|θ, n0, n1) is the probability that the two samples would have produced the data x0 and 

x1. Note that for equality (rather than proportionality) to hold, then the expression on the right 

hand side would be divided by the normalizing constant P (x0, x1|n0, n1). Under the naive 

model, we assume that both samples are independent, and moreover are assumed to be equally 

relevant to the problem of estimating θ, so this becomes: 

 )(),|(),|(),,,|( 1100`010 θθθθ PnxPnxPnnxxP ∝     

If the observations in a particular sample are generated independently, with probability θ of 

possessing the relevant characteristic, then the probability that x of n items possess the 

characteristic is given by a binomial distribution, in which: 
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Under such circumstances, a standard prior to use in a Bayesian analysis is a beta distribution 

over θ, in which one effectively “pretends” to have observed u previous observations that 

possess the characteristic and v previous observations that do not. 
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Note that when u = v = 1 we obtain the uniform prior density P (θ) = 1 (to understand why 

the uniform prior corresponds to the assumption of having seen one case of each possible 

outcome, see Jaynes 2003). However, we will assume that the learner has seen zero 

previous observations before the two data sets are collected (i.e., u = v = 0), since this 

produces a simpler estimator. Under these assumptions, 
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which corresponds to the expression for a beta distribution with parameters u = x0 + x1 and v 

= n0 + n1 − x0 − x1. Thus, to construct our estimator, the decision maker should simply report 

the mean of the corresponding distribution. Since the mean of a beta distribution with 
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parameters u and v is simply u/(u + v) we obtain the estimator reported in Equation 2:  
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To construct the “skeptical” estimator (i.e., Equation 3), we need to be a little more careful, 

since there are many different ways in which we could model the influence of factors like, 

age, location and source of the older sample. The simplest is to suppose that only some 

proportion t of the observations that make up the older data set is relevant to the current 

problem. If that is the case, then the old sample is effectively only of sample size t × n0, and 

the number of those observations that would meet the relevant criterion is reduced to t × x0. 

Having made those assumptions, it should be clear that the logic of the original naive 

estimator then carries through, and indeed this is how we produced all of the modified 

estimators (Equations 3, 4 and 5). It should be noted, of course, that this method is extremely 

crude: in truth we should expect the number of “actually relevant” observations in the prior 

sample to be a random variable rather than a fixed value, and indeed we might expect the 

effects in question to be much more complex than just “censoring” some proportion of the 

old data. Nevertheless, in view of the simplicity of the experimental design this model is 

sufficient for our purposes, and in our view it would serve no useful purpose to complicate 

the model further. 

Details  of  the  Individual  Subjects  Analysis 

In this section we discuss the analysis used to look at the responses made by individual 

participants. As noted in the main text, in the individual subject analysis we estimated values 

of ta, tl and ts for each participant, using a uniform prior on t and reporting the posterior mode 

(equivalent to maximum likelihood estimation). Thus, the scatterplots in Figure 7 plot the 

model prediction for E[θ] against the response x made by the participant, where each datum is 

shown in the “75% baserate, 25% new data” format. A simple descriptive measure of 
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agreement is provided by the correlation coefficient between E[θ] and x (i.e., regression with 

intercept fixed at 0 and slope 1), but to determine whether the model fit is adequate, we need 

to be a little more careful. Since, as noted in the text, people have a tendency to “round to the 

nearest multiple of 5 or 10”, a conservative approach would be to declare that when both x 

and E[θ] lie in the interval [50, 75], then the model has correctly predicted that the old sample 

(base rate) contributes more to the human judgment than the new sample (an “O+” datum). 

Similarly, if both x and E[θ] lie in the interval [25, 50] the model has predicted correctly that 

the new sample is more important (an “N+” datum). Conversely, if x lies in [75, 50] but E[θ] 

does not, then the model has failed to predict that the participant relies more on the old sample 

(an “O−” datum). Vice versa, if x is in [25, 50] and E[θ] is not, we have an N− datum. If x = 

50, the participant has weighted the two samples equally (a “50” datum), which could be 

either model-consistent or model-inconsistent. Finally, if x < 25 or x > 75, the participant has 

extrapolated beyond the range of the two samples (an “EX” datum), and the model cannot 

predict the response. We can then count the frequency of each type of datum for each 

participant (see Table A1), and use this to quantitatively choose between one of seven 

different explanations, based on the relative frequency of N+, N−, O+ and O− (for simplicity, 

we treat 50 and EX data as ambiguous and so exclude those data for the present purposes). 

The seven accounts are as follows: 

• NULL EFFECT. In the null effect case, we assume that all four events (N+, N−, O+ 

and O−) are equally likely with probability 1/4.  

• RANDOM EFFECT. In the random effect case, we assume that all four events 

have different probabilities, but with no particular pattern (that is, we assume a uniform 

prior on the probabilities).  

• NEGLECT. For the neglect account, we assume that a classic base rate neglect effect 

occurs, and moreover that this effect is inconsistent with the trust model. Neglect implies that 
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the data are more likely to be N than O, and model inconsistency implies that they are no  

more  likely  to  be  +  than  −.  In  short,  we  assume  P (N +) = P (N −) >  P (O+) = P (O−). 

• NAIVE. The logical complement of the neglect account is a naive-Bayesian who 

sides with the old sample in a manner that that is inconsistent with the trust model That is,  

P (O+) = P (O−) >  P (N +) = P (N −).  

• SKEPTIC. The skeptic account corresponds to a participant who sometimes sides 

with the new sample and sometimes sides with the old sample, but tends to do so in a manner 

that is consistent with the trust model. That is: P (N +) = P (O+) > P (N −) = P (O−).  

• NEW. An important submodel to consider is the intersection of neglect and skeptic: 

namely a person who sides with the new sample most of the time, in a manner that is 

consistent with the trust model. In this case we assume P (N +) > P (N −) = P (O+) = P (O−).  

• OLD. The last account to consider is the reverse of the last one, in which the 

participant generally gives responses consistent with the old sample, but also consistent 

with the model. That is: P (O+) > P (N +) = P (N −) = P (O−).  

Formally,  the  null  effect  model  assigns  probability  to  an  observed  data  set  X  as  

follows: 

P(X|null) = 4-N                                                                      (6) 

The  random  effect  model  is  a  standard  Dirichlet-multinomial  model,  in  which  the  

marginal likelihood  is: 

 P(X|random) =  
n

1
!  n
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! 
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  (7) 

where  n1,  n2,  n3   and  n4   denote  the  numbers  of  observations  in  each  cell.  For the 

neglect model, the naive model and the skeptic model, note that we have two “high 

probability” cells and two “low probability cells (so we denote them the “2-2” models). If Nh 

denotes the number of observations that fall in a high probability category and Nl is the 
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number that have low probability, the marginal probability is: 

 P(X|2-2)  = ⌡⌠

1/2

1

   








  
φ

2
 

N
h

 








  
1-φ

2
 

N
l

2  dφ 

  = 21−N ⌡⌠

0

1/2

  ( )1−u

N
h

uN
l dφ 

  = 21−N ∑
k=N

l
+1

N+1
  

N
h
!N

l
!

k!(N+1−k)!
 

1

2N+1 

  = 4−N ∑
k=N

l
+1

N+1
  

N
h
!N

l
!

k!(N+1−k)!
 (8) 

For  the  new  and  old  models,  the  approach  is  similar,  but  in  these  cases  there  is  one  

high probability  cell  and  three  low  probability  cells.  For  these  “3-1”  models, 

 P(X|3-1)  = ⌡⌠
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Applying  Bayes’  rule  gives  the  posterior  probabilities  associated  with  the  ith  model, 

 P(M
i
|X)= 

P(X|M
i
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 (10) 

where we assume P (Mj ) = 1/7 for all j. (It should be noted that since the model fitting 

process attempts to move the data into the two + cells, and there are three free parameters that 
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are fit in the process, an optimal selection procedure should correct for this by penalizing 

those accounts that allow N + or O+ to be higher probability – this is trivial to do via methods 

such as BIC, but such methods assume that the fit is optimized with respect to the model in 

question, which is not the case here: all seven of these models make use of the trust model 

estimates, which will tend to push data into the N + and O+ sectors, but are not optimized for 

that precise task. While it is quite possible to extend the analysis to do this sensibly, we are 

loathe to introduce even more statistical analysis into this paper). 

When we apply this analysis to the data shown in Table A1, it turns out that there is an 

extremely clear winner for 12 of the 20 participants (posterior probability > .94 for one of the 

seven models - remembering that the prior probability of each model was ~0.14). For 7 of the 

remaining 8 participants, the best model is at least 1.76 (and up to 8) times as likely as the 

next best model. In only one case (participant 19) is there a near-tie, where the assigned 

model, ‘Old’, has a 0.39 probability and the next best model, ‘Naïve’, has a 0.36 probability 

Overall, there are 9 participants for whom the “skeptic” explanation is best, with a 

further 4 given the “new” label and one labeled “old” (remembering, of course, that this last 

individual could almost as well be categorized as “naïve”). That is, one of the model-

consistent explanations proves best in 14 cases. In 5 cases, we observe a model-inconsistent 

“naive” result and, finally, we observe one case of a “random” effect. Overall, there are clear 

but sensible individual differences, with the majority of participants behaving in accordance 

with the trust model, but a non-trivial minority of people behaving in a manner according with 

a naive application of Bayes Theorem. 
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Table  S1 

Data, preferred models and posterior probabilities - indicating how likely it is that this model 

provides the best explanation for the participant’s data – of the 7 models considered here. 

ID N+ O+ O- N- 50 EX Best Model Post. Prob. 

3 12 9 0 3 8 0 Skeptic 0.94 

8 16 14 0 2 0 0 Skeptic 0.99 

10 12 8 2 1 7 2 Skeptic 0.94 

11 15 15 1 0 1 0 Skeptic 0.99 

17 16 13 0 3 0 0 Skeptic 0.97 

18 15 12 1 2 2 0 Skeptic 0.99 

4 9 6 4 2 1 10 Skeptic 0.49 

16 16 8 0 4 4 0 Skeptic 0.70 

14 6 6 3 2 11 4 Skeptic 0.46 

1 5 12 0 5 10 0 New 0.53 

6 2 22 1 3 4 0 New 0.99 

12 1 10 2 6 11 2 New 0.72 

15 0 18 1 2 11 0 New 0.98 

19 16 5 0 7 4 0 Old 0.39 

5 6 5 4 15 0 2 Naive 0.74 

7 17 0 0 11 4 0 Naive 0.99 

9 10 1 1 10 10 0 Naive 0.99 

13 19 0 0 13 0 0 Naive 0.99 

20 16 1 0 13 0 2 Naive 0.99 

2 5 5 4 3 15 0 Random 0.37 

 


