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ABSTRACT 

A transformational approach to visual perception 
is presented, in which image structure is encoded 
in the parameters of those transformations that 
produce an output maximally symmetric with the 
current input. Results are presented for a computer 
program, dubbed SMART (Symmetry Maximizing 
Array using Random Transformations). SMART 
consists of a parallel array of independent 
symmetry detectors. Each detector attempts to find 
a transformation that maximizes the symmetry 
between the original and the transformed 
configuration. The weighted output of the detectors 
is collated in a connection matrix, which 
summarizes the image structure and provides a 
continuously varying measure of relative symmetry. 
The program is applied to constrained and random 
arrays, Glass figures, and the detection of hidden 
symmetric targets. More general implications are 
briefly discussed.  

 

Most recent attempts to develop a general 
explanatory framework for phenomena belonging 
to the intermediate levels of visual perception can 
be classified into one of two broad categories. 
Likelihood approaches argue that image elements 
are organized by unconscious inference processes 
into the most likely hypothesis concerning their 
source (e.g., Albert & Hoffman, 1995; Knill & 
Richards, 1996). Simplicity approaches argue that 
perception organizes image elements so as to 
provide the simplest description or encoding of the 
source of that stimulation (e.g., Hatfield & Epstein, 
1985; Van der Helm & Leeuwenberg, 1996). 

Although both approaches provide plausible 
accounts of many phenomena, each is vulnerable to 
criticism. A problem for the likelihood approach is 
that assumptions required to assign likelihoods to 
hypothetical situations giving rise to an image tend 
to be elaborate and tenuous. On the other hand, the 
simplicity approach requires debatable assumptions 
concerning the basic elements of a description and 
the process by which descriptions are constructed. 
More importantly, neither approach suggests a 
specific mechanism by which their optimizing 
principles might be implemented. 

SMART (Symmetry Maximizing Array 
using Random Transformations)  

We propose an alternative, transformational 
approach, motivated by the obvious importance of 
symmetries and transformations in the recovery of 
object information in visual images (Barnsley, 
1993; Mundy & Zisserman, 1992; Tyler, 1996). 
This approach follows previous theorizing (Palmer, 
1999), but differs in that it attempts to explore 
specific mechanisms for maximizing symmetry. 

As a first step, we have developed a program in 
Matlab, dubbed SMART (Symmetry Maximizing 
Array using Random Transformations). Like 
someone trying to solve an anagram, the program 
begins by subjecting image elements to multiple 
random transformations. Symmetries produced by 
this process then select those transformations that 
best capture any structure in the image.  

Figure 1 illustrates the structure of the program. 
This consists of S symmetry detectors, operating 
independently of one another. Each detector inputs 
the coordinates of the set of points, P, normalized 
to be between 0 and 1, and subjects this set to some 
transformation, to yield a transformed set, Pt. 
Allowable transformations are currently restricted 
to combinations of rotations and vertical and 
horizontal translations, randomly selected from 
normal distributions, centered on zero. Standard 
deviations, σr, σv and σh, are typically set to values 
of π/16, 0.05, and 0.05, respectively. 

For each point, i, in Pt, the program finds the point 
in P that is closest to it, and records the distance, di, 
between these points. (To prevent null 
transformations, the restriction is imposed that 
point i in P cannot be considered for point i in Pt.) 
The distance, D, between the two point sets is 
evaluated as the sum of the individual inter-point 
distances, D = Σdi. The program then uses a hill-
climbing algorithm to find a transformation, t, and 
hence the point set P*, that corresponds to a local 
minimum of D. The coordinates of the two point 
sets, P* and P, are then compared. For each point i 
in P*, the distance di to its nearest neighbor in P is 
calculated. If this distance is less than a predefined 
tolerance, t, then a mapping {i, j} of that pair of 
points is recorded in a connection matrix, C. 



  

 

 
 
Figure 1. Information flow diagram of the processes involved in the SMART program. 

 

The matrix C starts as an NxN matrix of zeroes, 
where N is the number of points in P. The output of 
each detector then modifies C as follows. Each 
mapping {i, j}, made by the detector, corresponds 
to two entries in C (i.e., to cij and to cji). Both of 
these entries are increased by x, where x is the total 
number of mappings made by that detector. This 
weighting mechanism allows the best 
transformations to dominate C. 

After all detectors have modified C, the matrix is 
then normalized, as follows. The maximum value 
an entry, cij, can have occurs when all S detectors 
make the maximum of N mappings and the 
particular mapping {i, j} is made by every detector. 
Since this value will be equal to NxS, we normalize 
C by dividing each entry by NxS. The resulting 
normalized matrix constitutes a cumulative record 
of the major point symmetries discovered by the 
detectors. This record can be used, together with an 
Sx3 matrix of the associated transformations, to 
identify those transformations that maximize 
invariance in the image. The program can then be 
set to display only those mappings that contribute 
more than a certain threshold value, l, to the matrix. 

The SMART program also provides a measure, sr, 
of the relative symmetry of the array, according to 
the following rationale. If no detectors map any 
points, then we want sr to be 0. Conversely, if all S 
detectors map all N points, then we want sr to be 1. 
A detector that maps N points adds N to each cell in 
C that corresponds to a mapping, and hence adds a 
total of 2N2 (since each mapping corresponds to 
two entries). Thus, the upper bound on ΣijCij is 
2N2xS. After normalization, this total becomes 
2N2xS/(NxS), or 2N. We define sr as ΣijCij/2N. This 

is 0 when no mappings are made and 1 when all 
detectors find a perfect symmetry. 

Some examples of SMART analyses 

Despite its simplicity, SMART is effective at 
identifying structure in point arrays. The following 
examples illustrate the range of situations in which 
the program is successful in detecting structure and 
in simulating human performance.  

 

 

 

Figure 2. Illustration of how SMART detects 
simple translational symmetries and captures the 
Gestalt principle of organization by proximity as a 
result of the normally distributed values for initial 
transformations. For this analysis, the number of 
detectors, S = 20, the drawing threshold, l = 0.05, 
the mapping tolerance, t = 0.025, and the standard 
deviations for rotations, σr, and for vertical and 
horizontal translations, σv and σh, were π/16, 0.05, 
and 0.05, respectively. 
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Gestalt structure. As illustrated in Figure 2, if 
the program is applied to a regular array of points, 
which are naturally perceived as organized into 
columns rather than rows, it outputs a diagram of 
this structure. Thicker vertical lines indicate that 
the program has accorded a greater weight to 
vertical than to horizontal translations, in 
agreement with human perception. However, the 
preference for structure based on proximity is not 
explicitly built in, but follows from the assumption 
of normally distributed parameter values for the 
transformations carried out by the detectors. 

 

  (a)      (b)  

Figure 3. Structure detected by SMART in the 
constellation Perseus (a), with a summary of its 
representation in seven star atlases (b). (Thicker 
lines indicate more frequently connected points.) 
For this analysis, S = 20, t = 0.1, l = 0.05, and σr, σv 
and σh were π/8, 0.1, and 0.1, respectively. 

 
As illustrated in Figure 3, SMART is also capable 
of detecting structure in less regular arrays, such as 
the well-known constellation, Perseus. So far, we 
have not directly compared this capability with 
human performance. However, the summary data 
from seven star atlases, shown in Figure 3b, 
suggests that some configurations at least may be 
captured quite successfully. 

 

 

Figure 4. Illustration of how SMART can detect a 
regular configuration, or target, hidden in noise. 
The target consists of a circle, represented by 20 
equally-spaced points, embedded in 150 randomly 
distributed points. For this analysis, S = 20, t = 
0.025, l = 0.2, and σv and σh, were π/8, 0.1, and 0.1, 
respectively. 

Hidden figures.  More generally, the program 
is capable of detecting structure in any regular, 
semi-regular or irregular array. In addition, as 
illustrated in Figure 4, it can detect complete or 
partial regular structures embedded in random 
arrays. It is worth emphasizing that SMART has 
not been programmed to detect any particular 
structure in this array. This capability, in particular, 
may have some industrial or medical applications. 

Glass patterns.  Figure 5 shows two examples 
of so-called Glass patterns (Glass, 1969). These 
textures are generated by taking a uniform random 
spatial distribution of dots and superimposing a 
geometrically transformed copy of the set. Such 
textures are perceived as having a clear structure, 
consisting of dot pairs (or dipoles), locally aligned 
in the direction of the transformation used to 
generate them. Glass patterns are of interest 
because, in order to perceive structure in such 
textures, it seems necessary to suppose the visual 
system must be solving some form of 
correspondence problem. This is not 
straightforward because perceptual grouping based 
on proximity, for example, may operate against an 
organization based on (say) rotational symmetry. 

 

 

 
Figure 5. Glass patterns generated by (a) horizontal 
translation and (c) rotation and the corresponding 
mappings (b) and (d) detected by the SMART 
program. Parameter values were as for Figure 2. 

As can be seen from Figure 5, Glass patterns 
generated by translations or rotations pose no 
problem for the SMART program. Although the 
program does not currently incorporate dilations 
among the set of permissible transformations, it is 
not difficult to extend the program in this way. An 
advantage of this approach is that it detects global 
structure without the need for higher-level 
processing on the orientation of point pairs. 



   

Relative symmetry.  According to the 
traditional conception of symmetry, a figure either 
has a particular symmetry or it does not. However, 
most naturally occurring structures are 
characterized by imperfect symmetries that seem to 
vary in a continuous way. The SMART program 
provides a continuous measure of relative 
symmetry. 

 

 

 
Figure 6. Depiction of changes in the relative 
symmetry measure, sr, with increasing rotational 
symmetry. Parameter values for this analysis were 
S = 100, t = 0.025, and σr, σv and σh were π/16, 
0.05, and 0.05, respectively.   

 
As illustrated in Figure 6, this measure is a direct, 
monotonic function of the number of rotational 
symmetries in regular n-gons. More generally, 
however, the measure can be applied to arrays of 
any degree of complexity or irregularity, including 
many that would be characterized by human 
observers as ‘more or less’ symmetrical. This 
means that SMART has the potential not only to 
capture this aspect of perception, but also to 
generalize the application of approaches based on 
symmetry, and make possible their systematic 
investigation.  

Transformational approach in general  

Early explorations with this transformational 
approach suggest that it has the potential to provide 
a simplified, but workable, model of certain aspects 
of human visual perception (Vickers & Preiss, in 
press). Because it is a generative theory, and 
implies some understanding of the development or 
construction of objects, this approach shifts the 
traditional boundary between perception and 
cognition. For the same reason, the 
transformational approach has the potential to 
account for our perception of the ‘process history’ 

of an object (Leyton, 1992) and for the 
‘representational momentum’ that allows us to 
extrapolate to its future state (Freyd, 1987). For the 
same reason also, the transformational approach 
suggests that perceptual information may be 
remembered in a more dynamic form than has been 
generally supposed - one that is directly related to 
the way in which such information can be 
regenerated (Vickers & Lee, 1997). 
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