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Abstract

When studying human concepts, artificial categories are often
used that are very simple, with a chosen set of discrete features.
Images such as “greebles”, animal-like three-dimensional fig-
ures, are a more realistic and interesting alternative artificial
stimulus set for categorization experiments. However, espe-
cially for more complex stimuli, it is not obvious that partic-
ipants’ perceived similarity structure will be as simple as the
structure used to construct the stimuli. Therefore, it is safest to
first empirically obtain a measure of the stimuli’s structure. We
demonstrate the use of an odd one out task in order to model
people’s mental representations of a set of greebles, an exam-
ple set of moderately complex stimuli. We show that, although
the greebles were constructed such that they can be classified
into two sets of categories, these categories have a consider-
able amount of additional latent structure that can be extracted
by similarity modeling.
Keywords: greebles; similarity; categorization.

Consider a simple “odd one out” problem, in which people
are asked to decide which out of a collection of items is least
like the others. It is a fairly natural task, and in real life it
is sometimes used to help people acquire novel concepts -
it is, for instance, one of the recurring segments in the U.S.
children’s TV showSesame Street. In the children’s show,
only one salient characteristic is typically varied across the
presented items, but this need not always be the case. In a
more general setting, picking an odd one out will tend to pit
different aspects of the stimuli against one another, poten-
tially revealing latent mental representations without resort-
ing to somewhat unnatural tasks like rating similarity. Exper-
imentally, the idea is based on the kind of relative judgment
tasks that are common in psychophysics (e.g., Woodsworth &
Schlosberg, 1954, ch. 20), but less common when measuring
similarities (but see, e.g., Navarro & Lee, 2002).

In this paper, we pursue this idea, investigating how people
make choices involving “greebles”, complex visual stimuli
that have been used as a set of relatively homogenous non-
face objects in a range of experimental tasks (e.g., Gauthier
& Tarr, 1997; Gauthier, Williams, Tarr, & Tanaka, 1998; Gau-
thier, Tarr, Anderson, Skudlarski, & Gore, 1999; Rossion,
Gauthier, Goffaux, Tarr, & Crommelinck, 2002). We first ex-
plain why it is useful to empirically uncover people’s repre-
sentations of complex stimuli such as greebles. We provide
a brief overview of the greeble stimuli, and the manner in
which they have been used in previous research. We then
discuss the kinds of structured representations that might ac-
count for people’s decisions about greebles in an odd one out
task. Having done so, we present experimental data that il-
lustrate that the simple classification system generally used

to describe greebles is insufficient, and use the models devel-
oped to infer a richer representation of greebles.

Why the Greebles?
Research on category learning and category-based inferences
usually involves selecting category members on the basis of
some similarity structure. For example, a “family resem-
blance” structure is often used, where no one feature defines
a category, but all members have some features in common,
such as color, size or shape. Often researchers use artifi-
cial categories so that they can control the relevant category
knowledge available to participants. In order to control the
similarity within and between categories, stimuli are often
constructed using discrete features, which may be presented
to participants as written lists of features (e.g., Rehder, 2006)
or simple stimuli such as two-dimensional fictitious insects
or geometric shapes (e.g., Johansen & Kruschke, 2005; Ya-
mauchi, Love, & Markman, 2002).

One difficulty with this process is that people may not per-
ceive stimuli in terms of the features that the experimenter
thinks are most obvious; and if they do, it is almost certain
that they do not weight features as equally important. Even
in toy domains involving simple colored shapes the latter as-
sumption is typically violated, though the violations are typ-
ically minor (e.g., Lee & Navarro, 2002, table 5). A bigger
concern is the lack of ecological validity – if what we ulti-
mately want to know about is category-based reasoning for
complex real-world categories, such simple and abstract ex-
perimental stimuli may be too far removed from real cate-
gories. Furthermore, during an experiment, participants may
be less motivated to reason carefully about simple figures or
feature lists than stimuli that are more engaging and realistic.
With this in mind, the alternative is to work with naturalis-
tic stimulus domains. The awkward problem in this context
is that the underlying mental representations are even harder
to specify in such contexts, and a priori knowledge can vary
considerably across people.

In view of these difficulties, moderately complex artificial
stimuli such as the animal-like three-dimensional “greebles”
(described below) offer an attractive alternative for use in cat-
egorization studies. The greebles are more interesting and re-
alistic than many artificial stimuli that are used. However,
with more complex stimuli such as greebles, it is difficult
to tell a priori which “features” participants may consider
if asked to reason about the stimuli. As with most artificial
stimuli, we have some relevant prior knowledge about how
the greebles are likely to be represented, but cannot be sure
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a priori which features are more salient, or whether there are
subtle relationships between them. Accordingly, if such items
are to be used, it is safest to first empirically obtain a measure
of the stimuli’s structure. In this paper, we demonstrate the
use of an odd-one-out task for the greebles, and apply some
simple “semi-supervised” models to the resulting similarity
data.

Meet the Greebles
The greeble images that we consider in this experiment con-
sist of a set of artificial three-dimensional “animals”, made
available courtesy of Michael Tarr (http://www.tarrlab.org/),
and illustrated in Figures 1 and 5. All greebles have a main
body and four protruding appendages arranged in a roughly
similar configuration, though the shapes of appendages vary
between individuals. The greebles are constructed such that
they belong to one of fivefamilies determined by their body
shape, and one of twogenders, indicated by the direction in
which the appendages point (upward = males) (Gauthier &
Tarr, 1997). All greebles have a textured purple shading, with
two viewpoints or camera angles available.1

Although the greebles are interesting visual stimuli in their
own right, they have been used primarily to contest the hy-
pothesis that there are mechanisms specialized for recogniz-
ing upright human faces. The idea is that greebles are non-
face objects constructed systematically from similar features,
and are hence endowed with a degree of visual homogene-
ity similar to that seen with faces. The basic approach (e.g.,
Gauthier & Tarr, 1997) is to train people to become “greeble
experts” via an identification task (i.e., learning to name each
greeble), and then test whether putatively face-specific ef-
fects also occur with greebles once this expertise is acquired.
Demonstrated effects include particular patterns or locations
of brain activity (Gauthier et al., 1999; Rossion et al., 2002),
or behavioral effects such as sensitivity to configural infor-
mation (Gauthier & Tarr, 1997; Gauthier et al., 1998).

It is not unreasonable to suppose that, like faces, greebles
are complex and interesting perceptual objects. Nevertheless,
previous research has tended to rely on (at least implicitly)
a simple description of greebles in terms of the gender and
family membership of each image (e.g., Behrmann, Marotta,
Gauthier, Tarr, & McKeeff, 2005; Gauthier et al., 1998). For
instance, these two category systems have been relied upon
to control for the similarity among groups of greebles, or in
constructing composite greebles. Moreover, the five fami-
lies are sometimes assumed to be equally similar to one an-
other, though this seems unlikely. In short, while the proce-
dure used to generate the greebles provides some information
about how people perceive them, it is not a complete account.

With this in mind, when substituting greebles for faces, it
would be useful to know something about the inherent per-
ceptual relationships among greebles, since this can affect the
decisions or performance of participants in a variety of ways.
For example, participants make fewer errors while learning
to classify simple novel stimuli if the members within each
category are very “similar” (Posner & Keele, 1968). When

1Throughout this paper we refer to each gender and each family
as constituting a category. Obviously, however, one could argue that
“upward-pointing” is a feature possessed by several greebles. Math-
ematically, there are no differences between the two perspectives.

Figure 1: Three greebles categorized according to two different sys-
tems, gender and family. The first two greebles are in family 1, while
therightmost one belongs to family 2. The left and right greebles are
female, and the middle greeble is male.

=

Figure 2: An example of a similarity structure induced by an un-
correlated category system, shown as a graphical representation of
the equationS = ZWZT. The binary matricesZ are defined by
the categorization of the greebles into families and genders, but the
diagonal weight matrixW is unknown.

explicit category labels are involved, the general pattern is for
more errors to occur “near” a category boundary (Nosofsky,
1988). Since similarity and distance are notoriously difficult
to specify a priori, a safe course would be to obtain these mea-
surements empirically. However, no such measures appear to
exist for the greebles at present, so one goal of this paper is
to provide them.

Semi-Supervised Similarity Models
The task of inferring the latent semantic structure to a set
of objects is a central one to understanding human intuition
and judgment. Whether learnt from a set of similarity re-
lations (Torgerson, 1958; Shepard & Arabie, 1979), a natu-
ral language corpus (Landauer & Dumais, 1997; Griffiths &
Steyvers, 2002) or any other of a range of possibilities, the
key idea is to assume that people rely on rich mental repre-
sentations of the objects to guide decisions about those ob-
jects. In this case, which is not an uncommon one when deal-
ing with artificial-but-plausibly-complex stimuli, the greebles
are explicitly constructed to be partitioned in multiple ways
(i.e., gender and family). We refer to each of these ways of
classifying the greebles as a “classification system”, and note
that these systems are known in advance. What is less clear,
however, is whether a simple partition is sufficient to describe
the system: for instance, if the members of greeble family 1
appear perceptually more similar to family 5 than to family
4, we would need to augment these simple classification sys-
tems in some manner. It is to this topic that we now turn.

In what follows outline a minimum amount of formal the-
ory required to model the kind of data that emerge from the
odd one out task. We provide a moderately detailed discus-
sion of models that may be used to uncover latent percep-
tual structure implied by the choice data. Since some aspects
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Figure 3: Similarity structure produced by a correlated category sys-
tem. The binary matricesZ are defined by the categorization of the
greebles into families and genders, but the block diagonal weight
matrixW is unknown. Notice that, while the gross structure is very
much the same as that seen in Figure 2, the overall matrix has a
“patterned” look.

of the relevant structure (the categories) are known a priori,
but other aspects are unknown (relationships between cate-
gories), we refer to the models assemi-supervised similarity
models. Throughout the discussion, we use the following no-
tation for similarities and categories:S = [sij] denotes an
n × n matrix of pairwise similarities (wheren denotes the
number of objects), andZ = [zik] is an × m matrix of cate-
gory assignments, wherezik = 1 if the ith stimulus belongs
to thekth category. However, sinceZ is actually composed of
two different partitions (one corresponding to gender and one
to family, it is convenient to keep these submatrices distinct.
In general, if there areQ different systems, then we would
let Z(q) = [z(q)

ik ] denote the submatrix corresponding to the
qth classification system and writeZ = [Z(1) . . .Z(Q)]. Ac-

cordingly,z(q)
ik = 1 if stimulus i belongs to thekth category

within system q.

Uncorrelated categories
The simplest model we consider is one in which we assume
thatZ provides all the relevant structure, and useS only to de-
termine how much importance people apply to each category
(the matrixZ for the greebles is shown in Figure 2). That
is, we assume that greebles that belong to the same category
will be somewhat similar to each other, but do not assume any
other relationships. Formally, we assume that each category
represents a fixed (but unknown) degree of associationw

(q)
k

among its members: the predicted similarity between stimu-
lus i and stimulusj is given by

sij = c +
∑

q

∑

k

w
(q)
k z

(q)
ik z

(q)
jk . (1)

We would then optimize the weightsw(q)
k so that the pre-

dicted similarities matched the observed ones as closely as
possible. Note that in this case, the empirical similarities are
used only to estimate the “salience” of each category of gree-
bles. No additional relationships between the greeble cate-
gories are learned.

In essence, though the interpretation of the various terms
is slightly non-standard since (a) we are calling each fam-
ily a “category” rather than a “feature” and (b) we sort the
categories into multiple systems, this simple model is math-
ematically equivalent to the common features model (Tver-
sky, 1977; Shepard & Arabie, 1979). In matrix notation, the

model can be writtenS = ZWZT. In this expression,W is a
diagonal matrix whose non-zero elements contain the weights
associated with each category. This is illustrated in Figure 2.

Correlated categories

Although the cross-classified model described in Eq. 1 is al-
most identical to the standard common features model for
similarity, the fact that each category belongs to a particular
classification system suggests that there are likely to be rela-
tionships between some rows ofZ. For instance, somefami-
lies of greebles might be more similar to each other. Accord-
ingly, there should be some similarity between items belong-
ing to different categories within the same system. Formally,
this induces correlations between the categories, as follows:

sij = c +
∑

q

∑

k

∑

l

w
(q)
kl z

(q)
ik z

(q)
jl (2)

wherew
(q)
kl = w

(q)
lk denotes the association between thekth

andlth categories in systemq. This model can also be writ-
ten using theS = ZWZT matrix form, but the weight matrix
now has ablock diagonal structure to it (rather than the diag-
onal structure as per the uncorrelated model), as illustrated in
Figure 3. This correlated-category model has no analog in the
similarity literature, but is not unlike allowing correlated fac-
tors in a factor analysis models. The rationale in both cases is
similar – the underlying representational units (features, fac-
tors) may not be entirely independent of one another, so the
models need the capability to express this.

Structured categories

Although the uncorrelated-category representations are prob-
ably too constrained, there is a sense in which the correlated
model introduced in the previous section istoo flexible. To
see this, note that the correlated model is formally equiv-
alent to a situation in which we introduce a new “pseudo-
category” for everypair of old categories that belong to the
same system, and create a new free parameter for each one.
Accordingly, we also consider a third possibility, in which the
category correlations are expressed more parsimoniously, in
terms of a set of structured relationships between the various
categories. Specifically, we consider the possibility that the
categories are organized into a hierarchy, as well as the pos-
sibility that the categories are related by a set of overlapping
latent features.

Hierarchical structure. Inspired by the additive tree
framework used to derive a set of hierarchically-organized
relationships (Sattath & Tversky, 1977) from empirical cor-
relations, one approach is to assume a structured represen-
tation among categories based on trees. Supposing that we
have some tree topologyT (q) that describes the relationships
among the categories, and`lk = [`plk ] denote the lengths of
edges separating categoryk from categoryl, then the various
off diagonal weightsw(q)

kl (for k 6= l) are constrained by

w
(q)
kl ∝ 1 −

∑

p

`plk. (3)
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It is then straightforward to use this expression2 to construct
an optimal tree using standard methods (see Navarro, 2003,
for an overview of the range of methods and selection crite-
ria), in the sense of choosing the tree that minimizes the value
of the Bayesian information criterion (BIC), in order to find
a satisfactory compromise between data-fit and model com-
plexity.

Latent feature structure. It should be noted, however, that
tree topologies are quite restricted, and despite their theoreti-
cal appeal they may not provide the best model for the kinds
of structure observed in many contexts. A natural alternative
is to assume that the category correlations can be explained
via a set of latent features, such that

w
(q)
kl ∝

∑

b

vbfkbflb. (4)

This approach, which is more closely related to classic fea-
tural models (Shepard & Arabie, 1979) assumes that latent
structure is implicated in a particular set of categories, but
that this structure is not hierarchically organized. Instead, the
latent structure has much the same form as the “observed”
categorical structure: then × n matrixS is decomposed into
a binaryn × m matrixZ (wherem denotes the total number
of categories, irrespective of system), and anm×m block di-
agonal “category correlation” matrixW (i.e.,S = ZWZT).
In the latent feature model, each block ofW is further de-
composed into a set of binary features and weights: that is,
we apply a second decomposition, also of the formFVFT.
Again, a very extensive literature exists providing methods
for finding the best set of latent features (see Navarro, 2003).

Experiment
Method
Participants. Participants were 10 people recruited from
the general community (4 males, 6 females). Ages ranged
from 22 to 35 years.

Materials. The stimuli in this experiment were 20 greeble
images, as shown in Figure 5. Ten males and ten females
were selected, with four from each family and all with the
same camera angle.

Procedure. The experiment began with a simple familiar-
ization phase. Participants examined a sheet with all 20 gree-
bles (with genders and families mixed up), in order to show
participants the extent of variation in the set of greebles.
Participants then completed the experiment individually, on
a personal computer. For each trial, participants were pre-
sented with three greebles in a randomly chosen position on
the screen. Participants first selected the “odd one out”, then
rated their confidence on a 5-point Likert scale ranging from 1
to 5, where 1 was “unsure” and 5 was “highly confident” (the
confidence data is not discussed here). Each participant was

2The “constant” of proportionality that we use here and in Equa-

tion 4 is actually
√

w
(q)
kk w

(q)
ll , chosen by analogy to correlation co-

efficients. Itdoes matter when fitting our models, but we suspect that
it probably an unnecessary complication in the context of similarity
modeling, and in future extensions we may drop this term entirely.

1  1  1
1  1  5
1  2  3
1  3  3
1  3  5
1  4  2
1  4  3
1  4  5
1  5  7
1  5  1
2  1  4
2  1  7
2  2  2
2  2  4
2  2  6
2  3  2
2  3  4
2  4  7
2  5  1
2  5  2

Figure 4: The empirical similarity matrix for 20 greebles obtained
via the odd-one-out experiment. Darker tones indicate greater simi-
larity. The labels adjacent to each row of the similarity matrix indi-
cate which gender (first column) and which family (second column)
the greeble belongs to, as well as the individual (third column).

presented with all possible 1,140 combinations of three gree-
bles, in random order, divided up into 10 blocks. The instruc-
tions asked participants to work as “quickly and accurately”
as possible. They were encouraged to take breaks between
blocks. The experiment took around one hour to complete.

Results

Descriptive Analysis. Across the 11,400 judgments made
in the experiment, each pair of greebles appeared between
180 and 187 times (the variation is due to small amounts of
missing data). In a trial consisting of itemsi, j andk, if a par-
ticipant chooses itemk as the odd one out, we have evidence
that itemsi andj are somewhat similar to one another. Ac-
cordingly, an empirical measure of similaritysij can be con-
structed as the proportion of trials in which itemsi andj are
present, but neither is chosen as the odd one out (the standard
error for these estimates at this sample size is approximately
σ ≈ .04). The data are shown in Figure 4: given the fact that
there are non-trivial similarities between greebles that belong
to different categories, and those similarities are not constant
across categories (i.e., Figure 4 resembles Figure 3 more so
than Figure 2) it appears that the similarity structure for the
greebles is quite complicated, and probably not well-captured
by a simple set of unrelated categories.

Model Selection. To test this more thoroughly, we fit a
series of models to the data shown in Figure 4, using
the Bayesian information criterion (BIC; Schwarz, 1978) to
choose the best model for the data. BIC penalizes models
for having excessive parameters that might result in over-
fitting the dataset and reducing the generalizability of the
model (Myung & Pitt, 1997). The model that minimizes
BIC is to be preferred. As illustrated in Table 1, when cor-
relations between categories are disallowed (as per Eq. 1 and
Figure 2), we are unable to capture human performance very
well (BIC is large). If we allow the full range of possi-
ble associations, as is the case for the correlated categories
model, performance improves substantially (a BIC difference
of 1528 − 382 = 1146 corresponds to an odds ratio of about
e1146/2 ≈ 7 × 10248 to 1 in favor of the full model). Of
most interest, however, is the fact that this covariation is not
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Figure 5: A latent feature model for the greebles choice data. The large grey circles adjacent to the table denote categories, with the two
genders displayed as rows in the table, and the five families (1 to 5) shown as columns. The numbers displayed next to the grey circles are
the category weights (i.e., diagonal elements ofW). Black dots represent inferred features: lines connect categories to the latent features that
they possess, and the numbers show the weights associated with each feature.

Table 1: Performance of a subset of the models we considered, mea-
sured in terms of the percentage variance accounted for (VAF) and
the Bayesian information criterion (BIC). The best model found
is highlighted in bold. Models that do not allow correlated cat-
egories universally provide a poor account of people’s decisions.
The first two columns specify the structure used (uncorrelated, full-
correlation, latent tree or latent features), while the last three de-
scribe the overall performance. Empty cells refer to cases where the
corresponding categories were omitted entirely.

Gender Family VAF # Param. BIC

uncorrelated - 14.4% 3 6130
- uncorrelated 60.9% 6 2815

uncorrelated uncorrelated 78.9% 8 1528

- uncorrelated 82.3% 16 1602
uncorrelated full correlation 95.8% 18 382

uncorrelated tree 92.5% 13 566
uncorrelated feature 95.5% 12 356

arbitrary: the latent feature model with four features shown
in Figure 5 is superior (implied posterior odds ratio of about
442,413 to 1) to the full model. Qualitatively this is easy to
see – the 6 extra parameters in the full model only explain an
extra 0.3% of the variance relative to the latent feature model.

Nevertheless, it is important to note that not all kinds of la-
tent structure work: in particular, the structure between fami-
lies of greebles appears not to be hierarchical. Even the best
tree we found (shown in Figure 6) was considerably worse
than the full model, precisely because of the hierarchical con-
straint: as with with the latent feature model, the main regu-
larity lies in the similarities between families 1 and 5. How-
ever, because the tree topology imposes strict hierarchical

1

2

3

4

5

Figure 6: The topology of the optimal latent tree for the greeble
families, explaining 92.5% of the variance in the data. Each leaf
node (numbered circles) represents one of the five greeble families.
Distance through the tree represents dissimilarity between families:
in agreement with the latent feature model shown in Figure 5, the
main regularity found is the similarities between families 1 and 5.

constraints, the less heavily weighted aspects to the latent fea-
ture model do not emerge within the tree. As a consequence,
we were unable to find any category hierarchy that matched
the performance of the simple correlated category model.

Interpretation. Model selection via the BIC incorporates
a natural trade-off between data fit and model complexity.
Since the preferred model relies on the assumption that there
existsstructured relationships between the different percep-
tual categories (via latent features), we can say with some
confidence that this structure provides the best method for
statistically representing the data set. However, to sustain
a theoretical argument that the latent feature structure is the
right psychological model, it should at least be the case that
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the extracted features be interpretable. This can certainly be
done - the primary regularity (namely the similarities between
families 1 and 5) extracted by both the featural and tree mod-
els) corresponds to something like “approximate convexity of
body shape” (technically, the family 5 body shape is not con-
vex, but comes very close). Families 2, 3 and 4 all involve
major violations of convexity, but all in quite different fash-
ions. Another latent feature corresponds to the distinction that
families 4 and 5 are the only two “thin” families (families 1,
2 and 3 are all somewhat “curvy”, but again in different fash-
ions). The third latent feature, connecting families 1, 3 and
4, is much less convincing: the most plausible interpretation
is that this feature should properly be assigned to family 5 as
well, an expression of the fact that family 2 has a structurally
different body shape (with two segments) to the other four
families. That said, these are of course post-hoc descriptions
and one should be careful in attaching much weight to them.

Discussion
While most research involving greebles has focused on their
use as analogs for faces (e.g., Gauthier & Tarr, 1997), they are
of some interest in their own right as moderately complicated
visual stimuli. In fact, when considered in this light it seems
surprising that no previous work has attempted to learn how
people naturally perceive the greebles. Even in the context of
the simple “odd one out” task we consider in this paper, it is
clear that partitioning greebles into five families and two gen-
ders is an overly-simplistic way of representing the variation
in body shapes that people automatically find. However, by
providing explicit measures of similarity between greebles,
it should be straightforward for future research to take these
effects into account.

From a more theoretical perspective, by introducing ex-
plicit methods of uncovering the latent structure that underlies
people’s choices, it appears that these perceptual “categories”
are not organized into a hierarchical organization, but rather
seem to rely on a latent feature structure that can accommo-
date a richer pattern of variation. The idea of allowing corre-
lations between features within the common features model
that underlies techniques like additive clustering (Shepard &
Arabie, 1979; Navarro & Griffiths, in press) is novel, but the
restriction to this class of models is neither necessary nor de-
sirable: in future, the approach could be extended to cover
other representational models such as contrast models (Tver-
sky, 1977; Navarro & Lee, 2004) or even hybrid models that
mix between continuous and discrete properties (Navarro &
Lee, 2003).
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