
A Test of the Decision-Time Predictions of the ‘Take the Best’ Model

Benjamin Schultz (benjamin.schultz@adelaide.edu.au)
School of Psychology, University of Adelaide, SA 5005, Australia

Daniel J. Navarro (daniel.navarro@adelaide.edu.au)
School of Psychology, University of Adelaide, SA 5005, Australia

Abstract

The “take the best” model of decision making proposes that
people make decisions by sequentially searching amongst cues
for one that best discriminates between the options being as-
sessed. The search process starts with the best cue and pro-
ceeds in descending order of cue validity until one is found
that differentiates between the options. It follows, therefore,
that the more cues a person is required to use, the longer it
will take to make a decision. This study explored the relation-
ship between response time and the number of cues needed to
answer a binary choice question correctly. Participants were
asked a series of questions about mammals and their response
times were recorded. Results support the hypothesis that re-
sponse time increases as the number of cues required increases.
This gives further evidence that a sequential search is occurring
during binary-choice decision-making.
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Introduction
Examining human response times (RT) in simple decision
tasks is one of the oldest ideas in experimental psychology,
dating back to the analysis of individual differences in RT
among astronomers in the 18th and 19th centuries (see Bor-
ing, 1950), and in the intervening years a very considerable
literature has built up around the topic. The central idea in
modeling RT data is that the time course of human deci-
sions can be considered as a form of sequential analysis (e.g.,
Wald 1947), where people sample data from the environment,
and decisions are made once a sufficient amount of evidence
has accrued favoring one response over another (e.g., Rat-
cliff, 1978, Ratcliff & Smith 2004, Vickers 1979, Townsend
& Ashby 1983, Luce 1986). In recent years, a number of
the same basic ideas have been independently proposed in
the context of somewhat more complex decisions. For in-
stance, the “fast and frugal” approach to decision making ad-
vocated by Gigerenzer and colleagues (Gigerenzer & Gold-
stein, 1996; Gigerenzer & Todd, 1999) proposes that higher-
level decisions operate along similar lines, with people en-
gaging in a strategic, self-terminating search through memory
or the environment (see also Stewart, Chater & Brown 2006).

Although response latency in higher-level tasks would nat-
urally be expected to relate to the number of informative
“cues” that must be examined to justify a decision (as per
the “take the best” (TTB) model, for instance; Gigerenzer
& Goldstein, 1996; Gigerenzer & Todd, 1999), this assump-
tion has not been thoroughly investigated. This is not to say
that no relevant studies have been carried out: several stud-
ies have employed artificial or learned cues to examine the

sequential aspects of decision-making strategies (e.g., Br¨oder
& Gaissmaier, 2007; Bergert & Nosofsky, 2007; Nosofsky &
Bergert, 2007), finding evidence supporting TTB’s assump-
tion of a sequential search. Similarly, other studies have
explored semantic and categorical structure using RT (e.g.,
Hampton, 1979; Nosofsky & Palmeri, 1997), and looked at
the relationships between RT and choice behaviour generally
(e.g., Ratcliff & Smith, 2004), but the core proposition behind
TTB, that people search through cues sequentially in more
cognitively-oriented naturalistic decision tasks has not been
directly tested by looking at empirical response times.

In this paper, we present a simple experimental test of this
proposition. Using Gigerenzer and Goldstein’s (1996) “take
the best” model as a canonical example of the class of theo-
ries under consideration, we look at the relationship between
human RT and the number of cues TTB needs to look up, in
the context of making simple semantic decisions about famil-
iar animals. Using data collected by Ruts et al. (2004) as a
proxy for the cues people might use, we find a highly con-
sistent pattern of weak but significant correlations, suggest-
ing that the basic notion of sequential sampling common in
basic psychophysical decision tasks can be generalized suc-
cessfully to higher level tasks.

Take the Best: A Fast and Frugal
Decision Model

TTB is a decision strategy proposed to account for how peo-
ple make choices about real-world stimuli, making use of
the knowledge available to people in an fast and economical
manner (Gigerenzer & Goldstein, 1996; Gigerenzer & Todd,
1999). The basic concept is very simple: when choosing be-
tween two alternatives, people search for cues sequentially
in order of (some measure of) validity, and make a decision
based on thefirst informative cue that differentiates the al-
ternatives. When interpreted in terms of standard “sequential
sampling models”, this is equivalent to solving a sequential
analysis problem with a very high tolerance for errors (e.g.,
Lee & Cummins 2004). The basic process is illustrated in
Figure 1.

Though one of the desirable characteristics of TTB de-
scribed in Gigerenzer and Goldstein’s (1996) original work
relates to the fact that it makes quick decisions, the paper
makes no attempt to record human response times in decision
tasks or examine the relationship with the number of cues that
TTB needs to examine before the process terminates. How-
ever, as commented on by Bergert and Nosofsky (2007), the
model makes quite explicit predictions in this regard: to our
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Figure 1: Flow diagram for TTB, adapted from Gigerenzer and
Goldstein (1996). If both objects are recognized (always true in our
experiment), cues are examined sequentially in order of decreasing
validity. The search process stops and a decisions is made as soon
as a cue is found upon which the two items differ.

knowledge, the Bergert and Nosofsky (2007) paper is the only
one to have looked at RT in this context. However, their work
involved artificial stimuli; to fully investigate the relationship
between TTB behavior and human RT, it is important to look
at human decisions in fairly naturalistic domains, since TTB
relies heavily on a theoretical view that holds that human de-
cision making should be evaluated primarily with respect to
real world domains.

Experiment
In this experiment, we examine human choice behavior
when asked to make decisions regarding the relative heights,
weights and speeds of 25 land-based animals. The goal was
to determine (a) the extent to which human decision-times
correlate with the number of cues that TTB needs to exam-
ing to make the corresponding decisions, and (b) the extent
to which the TTB model makes the same decisions as human
participants.

Method

Participants. Twelve people (8 female, 4 male) partici-
pated in the study, all students at the University of Adelaide.
Participants ranged in age from 18 to 26 with a mean age of
21.9 years (SD = 2.28), and received either course credit or a
$40 book voucher for their participation.

Materials. Data collection proceeded via a computer-based
task, in which participants were presented with pairs of ani-
mals and asked to decide between them on some attribute (see
below). The task was implemented using custom software
written in Visual Basic, that recorded participant choices and
response times. During the experiment, screen refresh rates

Table 1: Animals used as query items in the experiment. The indices
for each animal correspond to the column numbers in Figure 2.

1 Monkey
2 Bison
3 Camel
4 Squirrel
5 Donkey
6 Giraffe
7 Deer
8 Dog

9 Polar Bear
10 Kangaroo
11 Cat
12 Cow
13 Rabbit
14 Llama
15 Lion
16 Mouse

17 Rhinoceros
18 Hippopotamus
19 Elephant
20 Horse
21 Tiger
22 Pig
23 Fox
24 Wolf
25 Zebra

were held constant at approximately 16.7ms, and response
times were recorded using a high precision timer (though for
this experiment the RTs were large enough for this to be a
somewhat unnecessary precaution).

In order to provide a reasonable approximation to the se-
mantic structure involved when making decisions about ani-
mals, a cue matrix for the 25 land-dwelling mammals listed
in Table 1 was constructed using data taken from a study by
Ruts et al. (2004). In that paper, 640 participants were given
the name of an object and asked to list 10 features (which
could be perceptual, functional, or ad hoc characteristics).
Each feature was then assigned a rating between 0 and 3 to
indicate the frequency with which it was used to describe an
object. Since TTB operates on binary attributes, we treated
a rating of 0 in the original study as equivalent to “cue not
present” and a rating of 3 as indicating “cue present”. For
the intermediate values (1-2) we took a pragmatic approach.
When the feature was inherently subjective (e.g., “is big”) we
treated these cases as “feature unknown”. However, when
these values occurred with respect to easily verified objective
characteristics (e.g., “has a tail”) the cases were treated as
“present” or “absent” depending on the true state of affairs.

The structure of the resulting 181× 25 cue matrix is shown
in Figure 2. Obviously, given the pragmatic choices made in
constructing this cue matrix, it cannot be treated as a literal
description of people’s mental representations of animals, but
it does have the desirable characteristic that it explicitly de-
rived from human judgments, suggesting that some relation-
ship should exist. The cue matrix was augmented with three
continuous-valued “target attributes” namely fastest observed
speed, largest observed height, and largest observed weight
for each of the animals, estimated using online databases.

Procedure. Before the trials began, participants were asked
to rate the familiarity of the items on a 10-point scale ranging
from “not at all familiar” to “very familiar”, since familiarity
should also be expected to be mediated by the cue matrix.
However, since TTB does not make explicit predictions about
familiarity, we omit the analysis of these data in this paper.
In any case, this served both as an auxiliary data collection
phase, and as a method of familiarizing the participants with
the set of stimuli to be used later in the experiment.

After the familiarization phase was complete, participants
then proceeded to the experimental trials. On any given trial
participants were shown two animals in either picture form
or simply presented with the animal names, and asked one of
three possible questions:
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Figure 2: Animal by feature matrix, sorted by validity for the
“height” question. Highly valid cues are at the top. White cells
indicate feature present (+), black cells indicate feature not present
(-), and grey cells indicate that the feature value is unknown.

When travelling at their fastest, which of the following
two animals is faster?

At their tallest, which of the following two animals is
taller?

At their heaviest, which of the following two animals
weighs more?

There was a 3000ms gap between trials in which partic-
ipants could read the question associated with the stimuli.
Once this period elapsed, two animals appeared on screen
(in either text or picture form), and the participant was re-
quired to select the animal they thought was faster, taller, or
heavier “as quickly and as accurately as possible”. These in-
structions were chosen in order to impose an explicit speed-
accuracy tradeoff upon the decision maker, typical in studies
of response time (see Luce 1986). Participants gave their an-
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Figure 3: Probability distribution over response times for partici-
pant 7 in the context of “height” decisions presented pictorially. As
is generally the case for response time distributions, the data are uni-
modal and positively skewed.

swers by pressing a key on either the left (using the Z key
on a standard Australian keyboard) or right (using the M key)
side of the keyboard. This procedure was adopted in order to
avoid the concern that mouse-operating skill would contribute
substantially to the variability in RT. Moreover, to control for
possible differences in speed associated with handedness, the
location of each item (i.e., either left or right) was random-
ized across trials. Finally, the order of questions and of pairs
of animals was randomized; however, the formats (i.e., pic-
ture or text) occurred in blocks, with the text version always
appearing first.

In total, each participant provided 1800 judgments (300
pairs× 3 question types× 2 formats), in addition to the
familiarization trials. Due to the large number of trials in-
volved, the textual and pictorial tasks were both split into two
blocks (450 trials each) with 15 minute breaks between each,
in order to reduce fatigue, eye-strain, and boredom. Note that
the task involved no supervised learning: participants were
not given feedback as to which animals were bigger, faster
or heavier (though the anwers were available at the end of
the experiment if participants were curious), with questions
relying instead on the assumed general knowledge of the par-
ticipants. By relying on pre-existing knowledge about real
world things, the approach is considerably more naturalistic
than earlier studies (e.g., Lee and Cummins, 2004; Bergert
and Nosofsky, 2007), but as previously noted relies on the as-
sumption that our participants made use of representational
structures not too dissimilar from the cue matrix collected
by Ruts et al. (2004). This choice was deliberate, since
the whole concept of fast and frugal models is built around
the “ecological rationality” hypothesis, that people’s decision
processes should be expected to look sensible only in fairly
naturalistic domains.

Results
Descriptive statistics. Of the 12 participants within the
study, only 11 completed both the pictorial and textual stim-
uli form conditions. The other participant completed only the
textual stimuli condition. Table 3 shows the means, standard
deviations, and skewness for all six conditions. Response
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Figure 4: Probability distribution over number of cues looked up by
TTB in the context of “height” decisions, and a smoothed estimate
of this distribution (estimated by standard nonparametric kernel den-
sity estimation methods). The similarity to the empirical RT distri-
bution in Figure 3 is not surprising, but failure to observe this would
represent a failure of the TTB model.

times varied considerably, as one might suspect, and tended
to be longer than is typically the case for simple perceptual
forced choice tasks (e.g., Luce 1986) since some deliberation
is required, but were never longer than than 10s. As is often
the case, RTs for all conditions were positive skewed, as illus-
trated in Figure 3. Preceding the correlational analysis, data
was screened and it was deemed necessary to treat response
times over 5000ms and numbers of cues required over 30, as
outliers. Thus these were removed from analysis.

TTB decision processes. Cue validities were calculated
from the matrix in Figure 2 using the Bayesian approach dis-
cussed by Lee, Chandrasena, & Navarro (2002), based on a
simple beta-binomial model. Each cue is able to discrimi-
nate between some number of object pairs, but this number is
quite variable. Accordingly, it is important to note that there
is much more uncertainty about the usefulness of a cue that is
able to make only a few decisions, when compared to a cue
that is able to make many decisions. If a cue makesg good de-
cisions andb bad decisions if it is relied on exclusively, then
the expected validityv according to a beta-binomial model is
simply

v =
g + 1

g + b + 2
.

The Bayesian aspect to this approach arises from the1/2
term, which results when no data are available for that cue
(i.e.,g = b = 0), and represents a prior belief about the prob-
ability that a cue will be useful. The use of this prior imposes
a “regression to the mean” effect, which Lee et al. (2002)
found to be extremely important in natural domains (in that
case, e-mail classification). Obviously, a different set of cue
validities was calculated for each of question type, since peo-
ple would be expected to search through memory in a differ-
ent fashion when asked about speeds than when asked about
heights.

Having found these validities, we then calculated the num-
ber of cues TTB needed to look up for all possible decisions
about heights, weights and speeds of animals, as well as the

decision that TTB predicts in each case. The main variable of
interest is the number of cues examined: for height, the num-
ber of cues ranged from 1 to 70, with mean 5.71 and standard
deviation 8.11. For questions about weight, the average num-
ber of cues needed is 6.93 (standard deviation 8.18, ranging
from 1 to 61), while questions about speed could require up to
53 cues, with an average of 10.34 (standard deviation 8.42).
As one would expect, all three distributions were positively
skewed, with height being the most skewed (skew = 4.20),
followed by weight (skew = 3.68), then speed (skew = 1.04).
The distribution over the number of cues required by TTB
when judging heights is shown in Figure 4. The solid black
line shows a smoothed version of the distribution. The fact
that the distribution is highly skewed is not surprising since
it represents the distribution of a minimum statistic (in statis-
tics, extreme-value distributions are always skewed), but it
is nevertheless a desirable characteristic since empirical re-
sponse time distributions are invariably skewed as well (e.g.,
Luce, 1986).

Agreement with human decisions. Before considering the
relationship between human RT and the number of cues TTB
examines in any detail, some preliminary checks are in order.
In particular, an important check is to see if a TTB proce-
dure based on the cue structure shown in Figure 2 is broadly
in agreement with human decisions in this task. To do so,
we looked to see if TTB makes errors on the same decisions
that human participants do. The probability with which TTB
made the same decisions as the human participants across
the various conditions is shown in Table 2. Those agreement
rates that are significantly higher than would be expected by
chance (i.e., if TTB decisions were unrelated to human deci-
sions) are shown in bold.1 On the whole, TTB choices agree
with human choices significantly more frequently than one
would expect by chance.

Correlations with human decision times. Since response
time and the TTB cue number distributions are both highly
non-normal, and that the relationship between them may not
be linear, Spearman rank-order correlations were used to
measure the strength of the relationship between the two.
These correlations are shown in Figure 4: of the 69 corre-
lation coefficients estimated, a total of 40 were significant at
the .05 level. This pattern is exceedingly unlikely to repre-
sent a chance relationship. Moreover, of the 29 correlations
that do not reach significance in their own right, 26 trend in
the correct direction (i.e. only 3 of the 69 rank-order corre-
lation coefficients are negative). While none of the effects
are particularly large (the interquartile range onρ runs from
.08 to .23), they are nearly always consistent with the TTB
model, which is quite remarkable: given that TTB relies on a
cue matrix produced by Flemish-speaking participants living
in Belgium, the ability to successfully predict the decisions
of English-speaking Australian participants is moderately im-

1If TTB is correct with probabilityθt and humans are correct
with probability θh, then expected rate of agreement by chance is
simplyφ = θtθh +(1−θt)(1−θh). The tests we conducted looked
to see whether the number of agreements between TTB and the hu-
man data could be plausibly be treated as a sample from a binomial
distribution with rate parameterφ. This is somewhat oversimplistic
since it ignores uncertainty about the value ofφ, but with 69 tests at
sample size 300 each, this seems a minor issue.
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Table 2: Probability of agreement between TTB decisions and hu-
man decisions. The values range from 52% agreement and 89%
agreement. More importantly, in 53 of the 69 cases (indicated in
bold), the probabilityof agreement is higher than would be expected
by chance (i.e., significant atp < .05).

ID# PW TW PS TS PH TH
1 .89 .88 .65 .63 .79 .80
2 .85 .82 .62 .59 .83 .79
3 .82 .83 .58 .63 .77 .81
4 .88 .87 .65 .64 .79 .82
5 .84 .84 .53 .58 .78 .80
6 .69 .72 .54 .52 .57 .70
7 .89 .87 .64 .65 .83 .84
8 .79 .84 .60 .63 .79 .83
9 .76 .83 .55 .57 .77 .80

10 .77 .77 .58 .61 .78 .76
11 .88 .86 .58 .62 .82 .81
12 - .88 - .66 - .83

Table 3: Response time (ms) means, standard deviations, and skew-
ness for pictorial (P) and text-based (T) stimuli, across the three dif-
ferent question types; height (H), weight (W), and speed (S).

Format Question Mean Std Dev. Skewness
P W 1085 671 4.64
T W 1475 834 3.09
P S 1246 824 3.49
T S 1698 1015 2.89
P H 1094 669 4.34
T H 1480 764 2.77

pressive. To provide a sense of these relationships, Figure 5
plots the number of cues that TTB looks up for each decision
against all 1800 response times made by participant 7 (for
whom the relationships are strongest), along with the best fit-
ting linear function.

Discussion
The consistent positive correlations between response time
and number of cues TTB examines found in this study, com-
bined with the above-chance rates of agreement between
TTB choices and human choices, provide support to the no-
tion that a sequential search is occurring in binary choice
decision-making. Our approach has a number of advantages
over other experimental designs. By examining participants’
choices and decision-times across several conditions in a real-
world domain (animals), we are able to ensure that the effects
are not artifacts of averaging or the use of artificial stimuli.
However, there are some equally-importantshortcomings that
should be noted. Most notably, as a consequence of the choice
to use a pre-existing naturalistic domain, the actual cues used
by people are unknown. The reliance on the Ruts et al. (2004)
data is intuitively plausible, and in some regards the fact that
we observed the expected correlations suggests that it is rea-
sonable to do so, but it would be desirable to investigate the
latent mental representations used by our participants. Addi-

Table 4: Spearman rank-order correlations for all participants and
for all six conditions. Conditions are listed as pictorial (P) or textual
(T), and by the question asked, namely height (H), weight (W), or
speed (S). Bold entries indicate significant correlations at the .05
level.

ID# PW TW PS TS PH TH
1 .21 .12 .14 .12 .15 .33
2 .14 .11 -.05 .09 .24 .20
3 .23 .09 .11 .06 .13 .07
4 .31 .16 .28 .23 .42 .31
5 .22 .26 .08 .10 .32 .09
6 .06 .21 .07 .06 .14 .03
7 .23 .24 .13 .28 .39 .24
8 .10 .16 -.00 .09 .10 .11
9 .05 .16 .08 -.06 .15 .04
10 .04 .15 .01 .07 .14 .11
11 .18 .23 .16 .21 .35 .15
12 - .09 - .23 - .24

tionally, a more complete analysis would use the cue matrix
to make predictions not only about response times, but also a
range of other variables that relate to people’s beliefs, such as
recognition, familiarity and typicality. On a more minor note,
extending the work to a wider variety of domains would be
useful. Overall, however, the results are fairly encouraging.

Viewed from a broader perspective, our suspicion is that
the results should be interpreted not so much as strong evi-
dence for TTB, but rather as support for a more general class
of sequential sampling models. That is, while our findings
are consistent with the TTB model, they are also very likely
to be consistent with a wide variety of sequential search pro-
cedures. For example, within the approach discussed by Lee
and Cummins (2004) which treats TTB as a special case of
a sequential sampling model inspired by Ratcliff (1978) and
Vickers (1979), search terminates after a limited (but vari-
able) number of informative cues are found instead of just
one. While we have not considered richer models such Lee
and Cummins’ in this paper, a natural extension of this work
would be to do exactly this.

In light of this, we suggest that the basic idea that people
make high-level decisions by sampling information from the
environment or from memory requires a broader examination.
In related work, we have considered the idea that people ex-
plicitly sample hypotheses in categorization (Navarro 2007;
Sanborn, Griffiths & Navarro 2006) and looked at whether
sampling from memory mediates basic decision-making bi-
ases (Bruza, Welsh & Navarro, submitted), but as the litera-
ture stands at present, it is difficult to say with any certainty
that the sorts of sequential sampling processes common in
simple decisions (Ratcliff 1978, Vickers 1979) are replicated
in higher-level cognitive processing. By explicitly correlat-
ing decision-times with simple sequential search processes
defined as “known” semantic structures, we are able to take
some steps in the direction of verifying this hypothesis.
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Figure 5: Response times for participant 7 plotted as a function of the number of cues TTB looks up in the Ruts et al. matrix, for all conditions.
All six conditions show a weak positive correlation.
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