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In the broad field of psycholinguistics, the modeling of language 
processing has evolved into a prominent subfield over the last couple of 
decades that now exerts substantial influence on the direction of the 
discipline (Christiansen & Chater, 2001). It has sparked new ways of 
thinking about how language is produced and perceived, most notably in 
the context of localist connectionist models. With these positive 
developments have come new challenges, such as devising tests to 
distinguish among competing models. 

The experimental method has proven to be well-suited for testing 
theoretical assumptions from which computational models are built. 
Differences between models can lead to contrasting qualitative 
predictions across experimental conditions, such as two main effects for 
one model and an interaction for its competitor. When successful, this 
method of model testing can yield evidence that convincingly 
discriminates between models. 

Because such definitive tests are not always possible, researchers must 
explore the intricacies and nuances of the models’ in order to identify 
conditions in which the models could be discriminated. This can be very 
much a hit-and-miss undertaking because most language processing 
models are often sufficiently complex that it is difficult to understand, let 
alone anticipate their full range of behaviors. Two consequences of this 
are evident in the literature. One is the discovery of an emergent property 
of a model, whereby it exhibits a behavior that was not purposefully or 
knowingly built into it. The model always possessed the behavior, but 
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the difficulty in understanding the full consequences of our design 
choices when building the model can leave us unaware of some of its 
capabilities. A related problem, which shows up too often in the broader 
cognitive science literature, is making what seems like a reasonable 
qualitative prediction about model performance that turns out to be 
wrong. For example, a researcher may collect what appear to be 
compelling data against a model (e.g., double dissociation), only to be 
shown afterwards through simulations or data fitting that the model in 
question can indeed produce the observed pattern of results. Because it is 
difficult to discern the full capabilities of one model, let alone assess the 
similarities and differences of two,  experiments that clearly discriminate 
between two models are not as common as one would like. 

An additional challenge has to do with the incremental approach to 
model development. Results that once discriminated between two 
models will no longer do so after the inferior model is modified to 
accommodate new data. Although this process should result in the 
models converging on the design of the language system, the similarity is 
functional, not necessarily structural. That is, the models will perform 
similarly across many testing situations (i.e., fit data or simulate 
phenomena), but be architecturally different. Performance differences to 
distinguish such models can be difficult to find.  

In this chapter, we introduce two methods for comparing quantitative 
models that can assist in tackling the aforementioned problems. The first 
focuses on inspecting the properties of the model itself to learn about its 
built-in power to simulate results. In the second, we introduce a method 
for identifying an experimental design that has the potential to 
distinguish between pairs of models. 
 

MINIMUM DESCRIPTION LENGTH: A METHOD FOR 
CHOOSING BETWEEN TWO MODELS  

The primary criterion used to choose among a set of models is the 
ability to simulate an experimental result. Most often this is quantified as 
a model’s goodness of fit (GOF) to data collected in an experiment. This 
is a necessary condition that all models must satisfy to be considered a 
possible description of the language process under study. The ability of a 
model to fit the data is determined not only by whether the model is a 
good approximation to the language process, but also by two properties 
of the model itself, collectively referred to as its complexity (Myung, 2000). 
The property most readers will be familiar with is the number of 
parameters a model possesses. The more parameters there are in a model, 
the better it will fit the data. Essentially, each parameter adds an 
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additional degree of freedom to the model that allows it to absorb more 
variance in the data, thus improving fit.  

Another dimension of a model that affects its ability to fit data is its 
functional form, which refers to the way in which the parameters, and 
possibly input, are combined in the model’s equation. For example, Oden 
and Massaro’s (1978) Fuzzy Logical Model of Perception has two 
parameters on a given trial. Anderson’s (1981) Linear Integration Model 
also has two. As can be seem in the equations below, the parameters are 
combined differently. They are multiplied in FLMP, but added in LIM. It 
turns out that FLMP’s multiplicative functional form makes it much more 
flexible in fitting data than LIM (Pitt, Kim, & Myung, 2003). 

 

 
A model’s complexity is directly related to its flexibility in fitting 

diverse data patterns. With its many parameters and powerful functional 
form, a complex model can produce many different data patterns, as 
depicted in the right-hand graph of Figure 1. A simpler model will have 
fewer parameters and a less powerful functional form. As shown in the 
left graph, it generates only one pattern, which changes little as the 
parameters of the model are varied across their ranges. 

The increase in flexibility that comes with additional complexity 
means that GOF will also increase positively with complexity. This 
relationship is depicted schematically in the top graph of Figure 2, with 
complexity on the x axis and a measure of fit, such as percent variance 
accounted for (r2)  on the y axis. By virtue of its complexity alone, not its 
close approximation to the language process, a model can provide the 
best fit to the data. It is this problem that makes GOF a poor model 

FIG 1.  Simple models (left panel) produce only a few patterns, whereas
complex models (right panel) can produce a diverse range of patterns. 
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FIG 2. The  relationship between goodness of  fit, generalizability and
model complexity. 
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selection criterion.  
If GOF should be avoided, what should replace it? This question has 

been studied intensively in allied fields (Linhart & Zucchini, 1986). The 
consensus is that GOF should be replaced by generalizability, which seeks 
to choose the model whose performance (i.e., fit) generalizes best to data 
sets from replications of that same experiment. That is, do not choose the 
model that fits a single sample of data well. Rather, choose the model that 
fits all samples (i.e., replications) well. By doing so, the problem that 
befalls GOF is avoided - an inability to distinguish variation due to 
random error across samples from variation due to the language process 
itself. 

The problem with GOF, and how generalizability overcomes it, is 
illustrated in Figure 2. The data points in the three bottom graphs are the 
same. The models (lines) increase in complexity from left to right. As they 
do, GOF increases as well. If GOF were the selection criterion, the model 
in the right-most graph would be chosen. It fits the data perfectly! The 
model in the middle graph fits the data less well, but notice that it 
captures the main downward trend and not the minor deviations of each 
point from this trend, which the right-hand model picks up. Which of 
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these models best describes the data? Advocates of generalizability 
would pick the middle model because it captures the main trend well 
and is not side-tracked by the noise in the data (i.e., random error present 
in each data point). The sensitivity of the right-most model to the random 
noise is what makes it overly complex. Model A, in contrast, is overly 
simple. The straight line does not capture the decelerating trend in the 
data. 

The lower line in the top graph depicts how fit and complexity are 
related when generalizability is used as a model selection criterion. It is 
an inverted U-shaped function that can be thought of as having two 
halves. In the first half, the complexity of the model must match the 
complexity of the pattern in the data. This is why generalizability 
increases as fit improves. If model complexity exceeds the peak of the 
function, generalizability will start to drop because the model will begin 
to fit random error, not just the regularity we attribute to the language 
process under study. Another way to think about generalizability is that 
it tries to strike a balance between the complexity of the model and the 
complexity needed to describe the regularity in the data.  

Although the concept of generalizability is easy to describe, 
quantifying it has been a nontrivial undertaking. Short summaries of 
various measures can be found in Pitt, Myung, and Zhang (2002). The 
state of the art method today is the Minimum Description Length (MDL; 
Rissanen, 1996, 2001). It is elegant and conceptually quite simple to 
understand, although sometimes computationally challenging to 
implement. Given a set of data and two models, imagine that you varied 
the parameters of each model across their ranges and for each 
combination of parameter values fit the models to the data. You would 
end up with a very long list of fits, some being much better fits than 
others (MDL uses a lack-of-fit measure so smaller values are best). After 
summing these best fits, you would end up with a measure of each 
models flexibility. The smaller the value, the greater the model’s 
flexibility.  

The flexibility of a complex model will allow it to produce a few 
exceptionally good fits to the data, but this very same flexibility, which is 
due to excessive parameterization and its functional form, will cause it to 
generate a majority of fits that are poor, making the MDL value large. In 
essence, overly complex models are penalized for having more 
complexity than is needed to capture the regularity in the data. For a 
simpler model, the situation is very different. Although no one fit will be 
as good as the complex model, the reduced flexibility of the simpler 
model will mean that there will be fewer fits overall, the fits will not 
differ greatly from one another, and quite possibly all of the fits might 
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not be too poor (compare the graphs in Figure 1) The MDL value of this 
simpler model could well be smaller. In short, a simpler model is 
penalized less severely because of its reduced flexibility, whatever the 
reason, be it fewer parameters or a simpler functional form. 

Although this discussion has centered on model complexity, it is 
important to note that MDL does not favor the simpler of two models just 
because of the model’s simplicity. Rather, a model’s fit to the data is 
evaluated relative to its complexity to make the best inference as to which 
model most likely generated the data. MDL is a statistical inference tool 
that, at its most basic level, is not unlike statistical inference used in 
hypothesis testing. Given a small sample of data, we decide which 
conclusion to draw given its probability of being sampled by chance from 
the population. Similarly, MDL extracts as much information from the 
data sample and the models to make the best inference as to which model 
generated the data. We have found that it works quite well in choosing 
models in multiple areas of cognitive psychology (information 
integration, categorization, psychophysics; Pitt et al, 2002). 

This short discussion of model complexity is meant to raise awareness 
of the difficulties of model selection. Although a model’s good fit to data 
can, on the surface, seem like convincing evidence in support of a model, 
caution should be exercised in interpreting the fit until the reason for the 
good fit is known. Is it because the model is a good approximation of the 
language process being studied, or is it due to the model’s complexity? 
Sensitivity to this issue will ensure a good fit is not misinterpreted. 
 

LANDSCAPING: INVESTIGATING THE 
RELATIONSHIP BETWEEN MODELS AND DATA 

Although neutralizing the effects of complexity is important to avoid 
selecting the wrong model, MDL only scratches the surface in informing 
us about model behavior. In addition to knowing that model A is more 
complex than model B, we would like to know more than this, such as 
how is it more complex and how and when does this extra complexity 
affect model performance. In short, we would like insight into the inner 
workings of the models, their similarities and differences, so that 
informative tests to distinguish them can be designed and carried out. 

We have begun to develop tools for gaining this insight. Landscaping is 
the first of these. It has been successfully applied to statistical models 
(Navarro, Pitt, & Myung, in press; see also Pitt, Kim, & Myung, 2003), 
and as of this writing it is being adapted to localist connectionist models. 
The approach is the same in both modeling contexts. What differs is how 
it is implemented. We describe and demonstrate it in the context of 
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statistical models because its application has been worked out more fully. 
Two computational models that are functionally quite similar can be 

difficult to distinguish because, as mentioned in the introduction, an 
experimental setup that will lead to differing predictions can be elusive. 
One reason for this is that the experimental method is a rather course 
procedure for testing quantitative models. The choice of experimental 
design and the exact levels of the independent variables are decisions 
most often made from a consideration of the verbal model and intuitions 
about how best to manipulate the variables. The most well-thought-out 
experiment can yield data that are minimally informative because both 
models end up fitting the data well enough that neither can be rejected 
with confidence. This outcome could be avoided if, before conducting the 
experiment, we knew how the models would behave relative to one 
another. Landscaping provides this information. It does so by taking 
advantage of the precision  of computational models to identify the 
circumstances in which model performance differs. 

Landscaping relies on GOF to compare models, but does so in a way 
that is consistent with the spirit of generalizability. Instead of comparing 
models on their ability to fit a single data set, we compare their fits to a 
large number of data sets. When graphed, they yield a landscape of fits 
that inform us about model distinguishability. This is illustrated in Figure 
3. Maximum Likelihood (ML) is used as the measure of fit. When the log 
ML value is taken, a negative value is obtained, with values closer to zero 

FIG 3. Schematic diagram of a landscape. 
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indicating a better fit.  
Landscape creation begins by generating 1000 data sets from model A, 

and these data are fit by both models. The x axis in the figure denotes 
model A’s fit, and the y axis denotes model B’s fit. Each of the dots 
represents one data set. By drawing a diagonal line across the middle of 
the plot (at x=y), we observe that points above the line correspond to data 
sets that model B fits better than model A, whereas the opposite is true of 
points below the line. This line is referred to as a criterion line, or decision 
threshold. Data that both models fit very well will fall in the top right 
corner, whereas data that both models fit poorly will fall in the bottom 
left corner. By plotting the relative fits to the data, we obtain a landscape 
that enable us literally to see how closely model B can mimic model A. It 
would be nice if model A always provided better fits to its own data, but 
in practice this is not always true. 

Construction of a landscape requires that data be generated from one 
of the models. In order to produce a data set, parameter values are 
needed. In the real world, it is rarely if ever known in advance which 
parameters values are most likely to be good ones (i.e., ones that yield 
model behavior that is similar to human performance). This is, after all, 
the very reason for the existence of free parameters. When comparing 
two models it is crucial to acknowledge this uncertainty. One way to do 
this is to specify a probability distribution over parameter values, and 
then sample the parameter values from this distribution. While we have 
used the “noninformative” Jeffreys’ distribution (e.g., Robert 2001), a 
range of distributions (e.g., uniform) might be used for this purpose.   

 

ILLUSTRATIVE APPLICATIONS 

In this section, we present three concrete examples of how landscaping 
can be fruitfully employed to learn about model distinguishability. In the 
first example, we show how landscaping (and MDL) can be used to help 
design more discriminating experiments. In the second, we demonstrate 
how it can be used to assess the informativeness of past data in 
discriminating between models. In the final example, we briefly show 
how landscaping can be used to highlight the complex ways in which 
models can interact with one another, and the implications this has for 
model selection. More details on these examples can be found in 
Navarro, Myung, Pitt & Kim (2003) and Navarro et al. (in press). 
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Experimental  Design 

The first example we consider uses the information integration 
models LIM and FLMP presented earlier. Suppose that we want to 
discriminate between them using a two-choice phoneme categorization 
task (e.g., choose /ba/ or /da/) with a two by eight design, and 24 
participants. This design involves two different levels of one information 
source (e.g., visual) and eight different levels of the other (e.g., auditory). 
Thus there are a total of 16 stimuli that may be produced by combining 
the two evidence sources. This is not an uncommon experimental setup, 
yet the landscaping plots shown in Figure 4 reveal that model 
distinguishability is asymmetric across data sets. When data are 
generated by FLMP (left graph), the FLMP model provides a superior fit 
to virtually all data sets. The long tail of the distribution indicates a 
sizeable majority of these are quite decisive. When LIM generated the 
data (right graph), the two models fit the data bout equally well, as 
indicated by the tightly packed distribution that hugs the criterion line. 

What are the implications of this outcome? If the language process is 
truly FLMP-like, then there will be no problem validating this with the 
2x8 design because FLMP will provide the best fit to the data. If the 
process is actually LIM-like, then it will be much more difficult, if not 

FIG 4. Landscapes for FLMP (left panel) and LIM (right panel), assuming a 2 
by 8 design without unimodal conditions. 
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FIG 5. Landscapes for FLMP (left panel) and LIM (right panel), assuming
a 2 by 8 design with unimodal conditions added. The solid line is the ML 
threshold and the dashed line is the MDL one. 

impossible, to distinguish between them. It would be preferable to 
conduct an experiment whose design does not suffer from this limitation 
so the models could be distinguished regardless of the form of the 
language process. Landscaping can assist in identifying such a design.  

It turns out that a minor alteration remedies the asymmetry. The 
preceding design does not ask how participants would respond when 
only one source of evidence is provided, even though the models make 
different predictions in these circumstances. LIM predicts pi = θi whereas 
FLMP predicts that pi = θi / (1- θi). By adding the 10 extra “unimodal” 
stimuli (two visual alone and eight auditory alone) to the design and then 
repeating the analysis, we obtain the landscapes in Figure 5. Clearly, the 
new design is far better able to discriminate between FLMP and LIM. 
Most notably, the data generated by LIM yield a distribution of relative 
fits has now moved above the criterion line. 

The effects of differences in model complexity can also be evaluated in 
a landscape plot. Because within an experimental design complexity will 
be constant between models, the criterion line will shift toward the more 
complex model by the amount the two models differ in complexity. The 
dashed lines in Figures 4 and 5 incorporate this adjustment, and actually 
represent  the MDL criterion instead of the ML criterion. Notice that in 
Figure 5 the relative-fit distributions are so far from both lines that it 
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really does not matter which model selection criterion one would use to 
choose the between the models. Both would perform about equally well. 
The right panel in Figure 4, in contrast, is an example of a case where 
good statistics can sometimes make up for the flaws in a design. With the 
ML criterion, 31% of the LIM distribution falls on the wrong (FLMP) side 
of the (solid) decision line. Although the (dashed) MDL criterion is very 
close to the ML criterion, it makes an enormous difference in model 
selection accuracy. Only 3.6% of the LIM data sets are now misclassified 
(on the wrong side of the criterion line). 

In sum, the second design is far more likely to distinguish the models 
and has the attractive property of being able to collect data that  clearly 
favor one model or the other because both relative-fit regions are distinct. 
Furthermore, it is much less sensitive to the choice of model-selection 
statistic. 

 
 
Informativeness of Empirical Data 

In addition to assisting with the design of future experiments, 
landscaping can be used to shed light on the informativeness of data 
collected in past experiments. A content area in which it has been 
fruitfully applied in this manner is modeling the time course of 
recognition, in particular because these models tend to mimic each other 
quite well. Furthermore, since commonly used MDL approximations 
such as the one discussed by Pitt et al. (2002) tend to fail in these cases 
(see Navarro, submitted), it is all the more important to have a 
quantitative methodology to guide model comparison.  

Consider the functions y = a exp(-btc) and y = a1 exp(-b1t) + a2 exp(-b2t) 
+ a3. The first “power-exponent” (PE) function is from Wickelgren’s  
(1972) strength-resistance theory of retention, while the second “sum of  
exponentials” (SE) function was suggested by Rubin, Hinton and Wenzel 
(1999). Both functions produce the decreasing, negatively accelerated 
curves that are highly typical of retention data, and provide good fits to 
the large number of data sets available (e.g., Rubin & Wenzel, 1996). 
Moreover, both satisfy Jost’s law: If two traces have equal strength at 
time t, but are of different ages, then the older one should decay less 
rapidly from that point on.  

Nevertheless, the two models represent different theoretical ideas: 
The PE function is based on the notion of a single memory trace whose 
decay is subject to two different factors. It is the action of these factors 
that produces Jost’s law. However, in the SE function, there are three 
different memory stores, each decaying with a constant deceleration. In 
this function, Jost’s law is produced by the multiplicity of stores.  
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FIG 6. Landscapes for the retention functions. The lower panel shows 
raw landscapes, while the upper panel shows estimated densities. 
The locations of empirical data are shown by triangles. 

Landscapes for the two models are shown in the lower panel of Figure 
6. The experimental design that was used to generate the data comes 
from a recognition memory experiment of Rubin et al (1999), chosen 
because the design was large (in number of time steps and participants) 
and because it was replicated three times. Two landscapes are shown on 
the same graph. The lightly shaded one was generated by the data from 
SE, while the darker one came from the data of PE. The upper panel gives 
the estimated probabilities of a given relative fit (see Navarro et al, in 
press for details). The highest density regions are concentrated near the 
criterion line. The models also have quite pronounced tails, indicating 
that they can be distinguished. Furthermore, when we overplot the fits of 
the models to the empirical data from the three recognition experiments 
of Rubin et al (triangles), clear evidence for SE over PE is visible. Two of 
the three points are not just below the criterion line, but quite close to the 
SE distribution, and just as importantly, far from the PE distribution. 

In hindsight, this outcome makes a good deal of sense. The 
experimental designs used in the Rubin et al. paper did not employ a 
distractor task, so the empirical data may represent a mixture of traces 
from short-term and long-term stores (Wixted, personal communication). 
Since the PE function incorporates only a single trace and is not designed 
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to accommodate short-term memory, these findings are highly 
interpretable. 

Note that the landscapes make such a conclusion much easier to 
support. Imagine, for instance, that we had presented Figure 6 with only 
the triangles (which is equivalent to a Table of  ML fits). It would seem a 
little rash to draw such strong conclusions, particularly since SE has more 
parameters than PE, so its superior fit is a little suspect. However, the 
landscapes provide information about the representativeness of a  
relative fit, which assists in interpreting the empirical data. The 
landscapes allow us to conclude with more confidence that SE really does 
perform better on these data, but there are also some aspects of the data 
that it clearly does not capture. 
 
Model Selection  

In this final example, we demonstrate how landscaping can reveal 
some of the complexities of model selection. Consider Nosofsky’s (1986) 
Generalized Context Model (GCM), and an extension of this model, 
GCM-γ (Shin & Nosofsky, 1992). In the GCM, the probability that an 
observed stimulus is judged to belong to a particular category is 
proportional to the stimulus’ similarity to a set of stored exemplars from 
that category. In the GCM-γ model, the probability of category 
membership is assumed to be proportional to some power γ of this 
similarity. Obviously, the GCM is a special case of the GCM-γ when γ = 1. 
While these notions are quite simple, the models gain considerable 
complexity from the underlying similarity measure. When we landscape 
these models using the similarity representation reported by Shin and 
Nosofsky (1992), the results are rather surprising. As is immediately 
apparent in Figure 7, the landscapes are remarkably different from each 
other. This is true despite the fact that GCM is nested within GCM-γ. This  
outcome arises because the γ parameter adds a large set of new data 
patterns that GCM-γ can produce and GCM cannot. This set is so large 
that GCM-like patterns are very atypical of GCM-γ. 

Comparison of the solid decision threshold (ML) to the broken one 
(MDL) reveals that the latter is far superior. Since the models are nested, 
ML classifies all patterns as belonging to the more complex model, GCM-
γ. To compensate for complexity differences between the models, the 
criterion line should be shifted downward by 5.2 units in both 
landscapes. Although this minimally affects model selection when fitting  
GCM-γ data (misclassification errors are still close to 0), selection 
improves for the GCM data, but errors are still quite high at 67%. 

Why was the complexity adjustment not better? Comparison of the 
landscapes reveals that complexity only partly accounts for the 
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differences between the models. Complexity measures like MDL consider 
the relationship between a model and data, but do not consider the 
interrelationship between models as well.  This limitation of scope results 
in a complexity measure that can suggest only a constant correction to 
the ML criterion. In the Shin and Nosofky experiment,  however, GCM 
and GCM-γ have a nonlinear relationship with each other as well as the 
data. Because the GCM landscape is so sharply defined, almost any 
pattern inside that region (which is basically a semi-circular area) is more 
representative of GCM. Anything outside of this area is more 
representative of GCM-γ. Therefore, the best way to discriminate 
between these models would be to define a nonlinear decision threshold 
along the borders of this semi-circular region. Measures of model 
complexity like those provided by MDL cannot achieve this.  
 

CONCLUSION 

Computational modeling has advanced the field of psycholinguistics 
by sharpening our understanding of theoretical ideas and their potential. 
To build a model, assumptions about process and representation must be 

formulated, which adds precision to one’s description of the language 
system.  

FIG 7. Landscapes for GCM (left panel) and GCM-γ (right panel). The 
solid line denotes the ML decision criterion, while the broken line is the 
MDL criterion. 
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The very success of modeling raises new and difficult issues. Two of 
these is how to compare and select between competing models. The 
consequences of the design choices made in model construction must be 
understood to succeed in either. Otherwise one runs the risk of being 
misled in the same way a garden-path sentence misleads a reader. The 
two quantitative tools introduced in this chapter are intended to assist in 
this enterprise. Landscaping is a simple yet powerful tool for assessing 
model distinguishability. MDL is useful for selecting among quantitative 
models, where the goal is to maximize generalizability, not goodness of 
fit. The three examples presented here (assessing the distinguishability of 
models within an experimental design, evaluating the informative of data 
in distinguishing models, and discovering complex relationships 
between models and data) are meant to demonstrate the usefulness and 
versatility of these complementary tools. We hope they are of practical 
use.  
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