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Abstract 

 
A difficulty in the development and testing of psychological models is that they are 
typically evaluated solely on their ability to fit experimental data, with little consideration 
given to their ability to fit other possible data patterns. By examining how well model A 
fits data generated by model B, and vice versa (a technique that we call landscaping), 
much safer inferences can be made about the meaning of a model�s fit to data. We 
demonstrate the landscaping technique using four models of retention and 77 historical 
data sets, and show how the method can be used to (1) evaluate the distinguishability of 
models, (2) evaluate the informativeness of data in distinguishing between models, and 
(3) suggest new ways to distinguish between models. The generality of the method is 
demonstrated in two other research areas (information integration and categorization), 
and its relationship to the important notion of model complexity is discussed. 
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The development and testing of theories is one of the most important aspects of 

scientific inquiry. As psychology has become increasingly reliant on quantitatively 
instantiated theories, it has become possible to directly test models against data. The 
precision inherent in these models affords the opportunity to study their inner workings. 
Ideally, this precision should lead to very explicit tests, and data that are clearly explained 
best by one model. Nevertheless, just the opposite occurs all too often, making it harder 
and harder to discriminate between competing models because they provide similarly 
good  fits to data and equally plausible explanations of the phenomenon being modeled. 
This is true of models of categorization (e.g., Minda & J. Smith, 2002), and reaction time 
(Ratcliff & P. Smith, in press), for instance. 

In this paper, we introduce a new method of analyzing data that is intended to 
provide insight into the causes of this congestion and possible ways to alleviate it. Called 
landscaping, it provides a visual and quantitative description of the distinguishability of 
statistical models. Instead of comparing models on their ability to fit a single data set, 
landscaping steps back from a single data set and takes a birds-eye view of a pair of 
models. From this vantage point, one can easily assess their potential distinguishability 
and the informativeness of a data set in deciding between them.  

 
1. Retention Data and Models 

 
We consider retention functions in order to illustrate the methodology, since there 

is a large literature with many data sets, as well as models that are relatively simple and 
highly competetive. Furthermore, interest in the form of the retention function has 
resurfaced in recent years (Rubin, Hinton, & Wenzel, 1999; Sikström, 2002; Wixted & 
Ebbesson, 1991). We begin by summarizing recent work comparing models of retention. 
 
1.1 Four Models of Retention 

 
Rubin and Wenzel (1996) attempted to provide some clarity on the form of the 

retention function by performing a data-fitting meta-analysis. Some 105 two-parameter 
functions were fit to 210 data sets that were collected throughout the 20th century. The 
inconclusiveness of this review prompted Rubin, Hinton, and Wenzel (1999) to collect 
several data that would yield a decisive answer. Each included 100 participants, measured 
retention at many time intervals, and was calibrated so that responses would span the full 
range of the dependent measure (proportion correct, which falls between 0 and 1). Our 
choice of models was largely based on these papers. 

 We first chose the power-exponent (PE) model,  based on Wickelgren�s (1972) 
�strength-resistance� theory, and used the full 3-parameter version, where the power is 
treated as a free parameter, given by y = a exp(-b tc), where a and c lie between 0 and 1, 
b ≥ 0, and t represents the elapsed time since stimulus representation.Given the success of 
a (slightly different) hyperbolic model in Rubin and Wenzel�s review, we also included a 
hyperbolic model (HY), y = a/(a + tb) that corresponds to the assumption that the odds of 
retention decline according to a power law (J. Anderson & Schooler 1991; Wixted & 
Ebbeson 1997). Additionally, we included the exponential model (EX) y = a exp(-b t) 
due to its historical interest. For both the EX and HY models,  a must lie between 0 and 



Model Distinguishability   4 

1, and b must be non-negative. Finally, we included Rubin et al.�s sum of exponentials 
(SE) model, y = a1 exp(-b1 t) + a2  exp(-b2 t) + a3. All parameters are non-negative, and 
(for identifiability reasons) b1 ≥ b2. The three main parameters in the model, a1 a2 and a3, 
are interpreted as three mutually exclusive memory stores, the first two of which are most 
important. The faster-decaying store, a1, corresponds to something like working memory 
and a2 corresponds to a longer-term memory store, while a3 represents very long-term 
residual storage.  

It is worth noting that in Rubin et al.�s experiments y is an estimate of the 
probability of correct recall, p(C), which of course cannot exceed 1 at any time, nor can it 
drop below 0, irrespective of whether retention was actually measured at that time. 
Notice that when t=0, the SE model reduces to a1+a2+a3. Unless this sum is 1 or less, the 
SE model violates this constraint, and the value of y makes no sense, because it predicts 
that more items were correctly recalled than were presented. Rubin et al. did not restrict 
the parameter range to prevent this from happening, which can (and does) result in 
inflated fits to the data. Accordingly we distinguish between two versions of the SE 
model, the unbounded SE model (SE-U) used by Rubin et al., and the bounded SE model 
(SE-B), in which the constraint 0 ≤ a1 + a2 + a3 ≤ 1 is added. It is this latter version that 
we consider in this paper. 
 
1.2 Methodological Issues 
 
 In this section, we discuss three important methodological issues. The first issue 
regards the dependent measure. While the two most commonly used measures in 
retention are p(C) and d�, we restrict our discussion to studies that used  p(C). The main 
reason for this is that the same retention function yields different statistical models when 
the dependent measure is  d� than when it is p(C), so the data sets are not directly 
comparable to one another.  In this initial investigation we chose to use the p(C) data sets 
due to their abundance. 
 The second issue is how one should calculate the goodness of fit. The commonly-
used  r2 measure assumes that error variation in the observed data is normally distributed, 
which is often reasonable, but can be a problem for a bounded discrete measure like p(C). 
At extreme values (e.g., p(C) > .97), the error distribution for p(C) is highly skewed, 
making a normal distribution inappropriate and leading to distorted values of r2. A better 
method in the current situation is maximum likelihood1. Instead of minimizing the 
distance between the observed data points and the model�s predictions, as in r2, it seeks to 
make the data seem as unremarkable as possible. This approach uses the model to assign 
a probability to the observed data, and finding the parameter values that maximize this 
probability. The value of this maximized probability is called the maximum likelihood 
(ML; see Myung 2003) The ML method permits the specification of an appropriate error 
distribution, thereby avoiding the skewness problem. For models that predict that p(C) 
data arise as an average proportion of success across a series of independent (Bernoulli) 
trials, the desired error distribution is the binomial.  

The third concern pertains to the data sets themselves. A total of 77 data sets from 
16 studies were used in the landscaping analyses. With the exception of five data sets 
from Rubin et al. (1999), they are a subset of those used by Rubin and Wenzel�s (1996) 
review (Some of the methodological details from the studies are presented in Appendix  
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Table 1. Fits of five retention models using ln(ML) to five data sets of Rubin et al. (1999; 
top), the average fit to the remaining 72 data sets (bottom). 
 

Data set EX HY PE SE 

Recall: matched color -561 -228 -296 -162 

Recall: white -565 -213 -288 -143 

Recall: random color -534 -194 -267 -133 

Recognition: remember + know -231 -58 -83 -39 

Recognition: remember -196 -49 -64 -44 

Average from remaining 72 sets -60 -38 -36 -31 

 
 
 
 

A.). Studies were selected that met three criteria, which were intended to reduce the 
heterogeneity of the database. (1) The experiments must not have tested autobiographical 
memory. (2) Humans must have been the participants. (3) The dependent measure was 
p(C), which allows the use of ML with binomial error. While these criteria provide some 
degree of �quality control� for the data, there are two important issues that they do not 
address. Firstly, they do not ensure that the data were gathered in a methodologically 
rigorous fashion. Thus it is possible that many data sets are �contaminated� by systematic 
error.  In addition, in most of the experiments, data were averaged across participants, 
which can distort the underlying structure in substantial ways (e.g. Brown & Heathcote, 
2003; Myung, C. Kim & Pitt, 2000). In this paper, we take the data sets at face value.  
 
1.3 Fitting the Models to Data 
 

As a first examination of these models, Table 1 displays their ln(ML) fits to three 
recall and two recognition data sets (the old-new and the recognition + know data sets2) 
from the Rubin et al. (1999) study. The SE model provides the best fit, although the HY 
model fits are comparable for the recognition experiments. What is most interesting, 
however, is that the fits to the recall data are substantially worse than the fits to 
recognition data.  

Next we fit all four models to the remaining 72 data sets, shown in the bottom 
row of Table 1. Again, the SE model provides the best mean fit, but just as Rubin and 
Wenzel found, none of the models emerges as the undisputed winner. The differences 
between -31, -36, and -38 on a log-odds scale are moderate to strong, but less than 
convincing in light of the difference in the number of parameters among models3. In 
short, this analysis does not obviously discriminate between SE, PE, or HY. However, it 
does suggest that the EX model, with a substantially inferior average fit of -60, is 
distinctly less impressive than the other three. This large-scale data-ftting exercise is not 
particularly helpful in choosing between candidate retention functions. In the sections 
that follow we shed some light on the causes of this impasse and what can be done about 
it. 
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2. Introduction to Landscaping  

 
This section introduces the basic ideas underlying landscaping. However, since 

the technique is partly motivated by the limitations of data-fitting analyses of the kind 
presented in the previous section, we discuss these first. 
 
2.1 Data-Fitting: A Local Model Analysis 
 

A common method of choosing between models is to assess how well they 
approximate experimental data, whether by fitting the model to the data or by simulating 
the phenomenon (common in connectionist modeling). This approach is informative 
because the mental process being modeled is reflected through the data. However, as the 
previous discussion shows, even large amounts of data can still fail to distinguish 
between models, especially if the data are not entirely reliable. We refer to this type of 
model selection as local model analysis (LMA) because of its emphasis on analyzing 
(local) fits to data.  

There are at least three substantial difficulties with LMA. Firstly, psychological 
data tend to contain lots of sampling error (i.e., they are noisy), which can obscure 
potentially informative trends, or worse, provide genuinely misleading information about 
the underlying cognitive process being studied. For instance, when modeling the 
similarity between stimuli, it is commonplace to use the statistical technique known as 
multidimensional scaling. However, it has recently become clear that noisy, averaged 
data can distort the scaling solution in some ways (Ashby, Maddox & W. Lee, 1994; also 
see M. Lee & Pope 2003). This kind of problem is particularly pronounced for nonlinear 
models (e.g., Brown & Heathcote, 2003; Estes 1956; Myung, C. Kim & Pitt 2000), which 
are increasingly common in psychology. LMA does not deal with this kind of problem. 

Secondly, some experimental designs may not elicit very informative data in the 
first place. For example, too few variables may be measured, or a poor task might be 
inadvertently chosen. When trying to distinguish between retention functions, it is 
virtually pointless to have only three or four retention intervals, since any reasonable 
function will provide an excellent account of the data (Rubin & Wenzel 1996). 

Thirdly, similar models can be difficult to tell apart on the basis of fit alone, even 
when  fit to very good data, as illustrated in Table 1. Perhaps ironically, this phenomenon 
can be a natural consequence of good science: Competing models will become 
increasingly alike if they are able to provide good fits to an ever-expanding pool of data 
sets. This trend is evident for many types of models, including both connectionist models 
(e.g. the TRACE and MERGE models of speech perception; see McClelland & Elman, 
1986; Norris, McQueen & Cutler 2000) and algebraic statistical models (e.g., the FLMP 
and LIM models of information integration; Oden & Massaro, 1978; N. Anderson, 1981; 
Navarro, Myung, Pitt & W. Kim, in press). When presented with two good models, the 
best that we can say using LMA is that both models fit the data reasonably well. 
 
 
 
 



Model Distinguishability   7 

2.2 Landscaping: A Global Model Analysis  
 

Global model analysis (GMA), in contrast, steps back from a particular data 
sample and focuses on the behavior of the model as a whole. One form of GMA that we 
have studied in prior work is model complexity (Myung, Balasubramanian & Pitt, 2000; 
Myung & Pitt, 1997; Pitt, Myung & Zhang, 2002). It is concerned with assessing the 
inherent flexibility of a model in fitting data. Not only can this property of model be 
quantified, but it can be integrated with a goodness-of-fit measure (ML) to improve 
model selection. We will briefly discuss model complexity later in the paper. 

Here we introduce a complementary GMA method called landscaping, an early 
version of which was used by Pitt, W. Kim and Myung (2003). Landscaping fulfils the 
above desire to add more meaning to fits to data by increasing our understanding of the 
models and data. A related resampling technique that uses the parametric bootstrap has 
also been proposed by Wagenmakers, Ratcliff, Gomez and Iverson (in press), though 
their focus is more on local analyses of model mimicry. Similar procedures are discussed 
in a more explicitly Bayesian framework by Geweke (1999a, 1999b). Wagenmakers et al. 
provide a nice discussion of the relationship between these techniques. 

At its simplest, landscaping is a graphical depiction of the relationship between 
two models and experimental data. It is created by fitting one model to many (e.g., 1000) 
data sets that were generated by that model using a particular experimental design (the 
data generation method is discussed in detail later). Another model is fitted to those same 
data sets, and the fits of the two models are plotted against one another. The scatterplot 
formed by these points is referred to as a landscape. 

Figure 1 illustrates this schematically for two hypothetical models A and B. Data 
are generated from model A, and these data are fit by both models. The x axis in the 
figure denotes model A�s fit, and the y axis denotes model B�s fit. Each of the dots 
represents one data set. By drawing a diagonal line across the middle of the plot (at x=y), 
we observe that points above the line correspond to data sets that model B fits better than 
model A, whereas the opposite is true of points below the line. This line is referred to as a 
criterion line, or decision threshold. Data that both models fit very well will fall in the 
top right corner, whereas data that both models fit poorly will fall in the bottom left 
corner. By plotting a large number of data sets, we obtain a landscape of relative fits that 
enable us to see how closely model B can mimic model A. It would be nice if model A 
always provided better fits to its own data, but in practice this is not always true. When 
comparing fits of models A and B in a landscape plot, we denote the comparison B/A 
when A generates the data, and A/B when B generates the data. 

Because the co-ordinates correspond to log-likelihoods, they combine additively 
(see Murray & Rice 1993, p. 9-11 for a principled discussion). Consequently, the natural 
way to measure the distance between two points  (x1, y1) and (x2, y2)  in a landscape is to 
use the City Block distance |x1-x2| + |y1-y2|. In this way, the plots preserve the underlying 
statistical relationships between models and data. One useful by-product of this 
correspondence is that measuring the distance of a dot to the criterion line produces (the 
magnitude of) the log-odds value ln(MLA)-ln(MLB). Furthermore, we can measure how 
much better on average one model fits the data than another, by taking the arithmetic 
mean of all log-odds values. Visually, this corresponds to measuring the perpendicular 
distance from the landscape�s centroid to the criterion line.  
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Figure 1. Stylized depiction of a landscape graph in which the fits of model A to a large 
number of data sets are plotted against the fits of model B. Since the data sets are 
sampled from model A, the plot provides an indication of how effectively model B can 
mimic model A.  

 
 

3. Application of Landscaping to Retention Models 
 

In this section, we apply this methodology to the EX, HY, PE, and SE models. As 
discussed earlier, our database included 25 unique experimental designs. We first discuss 
the procedure, and then use it to assess the inherent distinguishability of the models. 
Finally, we discuss to evaluate empirical data in a landscape. 
 
3.1 Performing the Landscaping Analysis 
 

Landscaping involves generating data from one model (HY, for instance) and then 
fitting several different models (in this case, EX, HY, PE and SE) to those data. 
Generating data from a model is a three step process: Randomly choose some values for 
the model�s parameters (a and b), evaluate the model�s predictions (i.e., find y), and add 
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noise to the data. The first of these steps is the most difficult. In the real world, it is rarely 
if ever known in advance which parameters are most likely to be good ones. This is, after 
all, the very reason for the existence of free parameters. When comparing two models it 
is crucial to acknowledge this uncertainty. One way to do this is to specify a probability 
distribution over parameter values, and then sampling the parameter values from this 
distribution. We used Jeffreys� (1961) distribution for this purpose (see Appendix B), for 
two reasons. The first is that it is reparametrization-invariant. In other words, if we re-
write the same model using different equations, nothing changes. For instance, the 
functions y = a exp(-bt) and y = rs-t actually describe the same model, since they are 
related through the reparametrization r = exp(-b), s = -(1/b) log a. Unfortunately, the 
uniform distribution on (a, b) does not correspond to a uniform distribution on (r, s), and 
vice versa. However, it turns out that the Jeffreys� distribution on (a, b) does correspond 
to the Jeffreys� distribution on (r, s), as discussed by Gill (2002, p. 123-125). Thus the 
resulting landscape does not depend on the way that the equations are written: Rather, it 
is an inherent property of the model.  

The second reason is that Jeffreys� distribution assigns equal likelihood to every 
(distinguishable) distribution indexed by the model (Balasubramanian 1997), which make 
it a kind of �noninformative� distribution within the parameter constraints (in this case, 
parameter constraints ensured that the function is always decreasing, for instance). 
Although it may be convenient to use more tractable distributions in other applications, 
we have not examined the consequences of doing so. Also, in many situations a great 
deal of prior information about the parameters is available. In these cases it may be more 
useful to choose a distribution based on this information rather than use the uninformed 
formulation that we have adopted here. 

Once a set of random parameter values (e.g., a=.1, b=2) has been chosen, it is 
straightforward to find the model predictions (y), by substituting these values into the 
model equations. This allows us to move onto the last stage, adding noise to the data. 
Since the error distribution for y is binomial, this is trivial. The conceptually simplest 
method is to simulate N hypothetical trials, where N denotes the number of trials in the 
experimental design. This is done by generating N uniformly distributed random 
numbers, and counting the number that are less than or equal to y. This count corresponds 
to the number of correct responses for the current time interval. Once this is done for 
each different time interval, a data set has been sampled from the model. 

When the data have been generated, the next step is to fit the models (EX, HY, PE 
and SE) in order to find ln(ML) values. This process is no different from fitting empirical 
data, and can be done by using standard numerical methods. In all of the current analyses, 
we used a combination of trust-region and Levenberg-Marquardt methods (see Nocedal 
and Wright 1999), repeated 10 times for each data set using different initial conditions to 
avoid suboptimal results. The output of this procedure is a set of four ln(ML) values for 
each data set, one for each model. After repeating the data-generation and data-fitting 
steps 1000 times to ensure that a �sufficient� range of the parameters is sampled, the fits 
to any pair of models (EX and HY) can be combined to produce a plot like Figure 1. 

An important point to make regarding retention landscapes is that they are 
sensitive to those aspects of the experimental design that affect the models themselves. 
The time interval t appears in all of the equations describing retention functions, which 
means that changing the retention intervals changes the landscapes. This is also true of N, 
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because ML is sensitive to sample size through the specification of the error distribution. 
However, the landscape will not be affected by changes in other design variables (e.g., 
stimuli, task), even though these can affect empirical data. In our collection of 77 data 
sets from 16 studies, there are 25 unique combinations of N and t, which meant that there 
were 25 conditions in which to compare the four models. 

 
3.2 An Illustrative Case: The Burtt & Dobell (1925) Design 
 

Figure 2 displays the matrix of landscapes for the experimental design of Burtt 
and Dobell (1925), and is fairly typical of the 25 designs. Data-generating models (x axis) 
form the rows, and competing models (y axis) form the columns. One striking aspect of 
the figure is the variation in the size of the landscapes. They vary mostly in their length, 
and provide an indication of the relative distinguishability of pairs of models. By looking 
across rows, the distinguishability of the data-generating model from its competitors can 
be seen. While EX and HY are distinguishable from each other, neither is easy to 
distinguish from PE or SE. PE and SE, on the other hand, are more consistently 
distinguishable from their competitors. 

The overall distinguishability of two models, say HY and SE, must be assessed by 
inspecting the landscapes generated by both models, SE/HY and HY/SE. It is clear that if 
HY describes the retention function, then it will be difficult to distinguish it from SE, 
since SE can fit most HY data fairly well (mean log odds = 4.5). Alternatively, if SE is a 
better description of retention, the models are distinguishable: There are data patterns 
that SE can fit well but HY cannot (mean log odds = 23.53). Of course, this only implies 
that they can be distinguished, not that they will be. In order for models to be 
distinguished, experimental data need to fall �in the right spot� in the landscapes.This is 
not guaranteed to happen in an experiment, an issue we discuss in depth later. 

Two of the graphs in the upper right of the matrix look as though their landscapes 
are missing. The distribution of points is highly peaked and straddles the criterion line, 
indicating that the competing models (PE and SE) fit the EX data as well as, and 
sometimes better than, the data-generating model. This is as it should be because EX is 
nested within SE and PE. Both of these models can fit any data set generated by EX. The 
reverse is not true, which is why the EX/SE and EX/PE landscapes in the lower left 
corner are so elongated. However, comparison of these two landscapes shows that the 
two models are not equally discriminable from EX: Mean log odds for the EX/PE 
landscape is 2.21, compared with 17.32 for EX/SE. (The reason for this difference is not 
obvious from Figure 2, because it does not convey an impression of how dense the points 
are at different locations. The EX/PE landscape is in fact densely clustered near the 
criterion line, whereas the EX/SE landscape is more diffuse: The representativeness plots 
introduced later help rectify this problem). 

 
3.3 Distinguishability as a Function of Design 

 
Changing the number of time intervals |t| or the sample size N can change the 

landscape, and thus the distinguishability of the models. The experiments in our database 
vary enough along both dimensions to assess the effect of each fairly independently of 
the other. The top row of graphs in Figure 3 shows the effects of N on model  
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Figure 2. Landscapes corresponding to the Burtt and Dobell (1925) experimental design. 
For each subplot, the data-generating model appears on the x axis, and the competing 
model appears on the y axis. The ordering of models from left to right (and top to bottom) 
is EX, HY, PE, SE.  
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Figure 3. Illustrations of the effects of N and |t| on the landscapes. Landscapes in the top 
row are from Krueger (1929; left; N=280, |t|=6), and Runquist (1983; right; N=1728, 
|t|=6). Those in the middle row are from Wickelgren (1968; left; N=40, |t|=5) and Strong 
(1913; right; N=40, |t|=13). The bottom panel is from Squire (1989; N=1078, |t|=15). 
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distinguishability when |t|=6. The HY/SE landscape in the left graph is from a recall 
study by Krueger (1929; N = 280), and the one on the right is from a cued recall study by 
Runquist (1983; N = 1728). The effect of increasing N is dramatic. The distribution of 
points in the low-N graph is highly peaked and centered very close to the criterion (mean 
log odds = 3.94), providing little opportunity for finding discriminating data. The high-N 
distribution is much more spread out, indicating that HY fits many of these SE data sets 
poorly (mean log odds = 94.3).  

Variation in |t| has a similar though smaller effect than N, probably due in part to 
its smaller range (5-15). The left landscape on the middle row of Figure 3 is from 
Wickelgren (1968; |t|=5), and the one on the right is from Strong (1913; |t|=13). Both are 
recognition studies with N =40. The models are essentially indistinguishable when |t| is 
small (mean log odds= 0.71), but HY�s fits worsens when |t| is large, making the models 
a little more discriminable (mean log odds=8.56). Comparison of the relative location of 
the landscapes in the graphs shows that the fits of both models decrease as |t|  increases, a 
change that is much less evident with variation in N; note how the landscape slides down 
the criterion line from the left to the right graph. The bottom graph shows the landscape 
with the largest N and |t| in our database (Squire, 1989). It provides what might be 
considered a likely upper bound on the distinguishability of the HY and SE models. 

Although these examples illustrate that N and |t|  can affect model 
distinguishability for the four models under consideration, the effects of N are not only 
much more potent, but also more predictable. When the mean log odds of each of the 25 
experimental designs (collapsed over the 12 model pairings in a design) were correlated 
with each variable, the relationship was strong for N (r = 0.85) but weak for |t| (r = -0.09; 
N and |t| are weakly correlated, r = -0.04). We suspect that this is caused by the different 
effects the two variables have on data-fitting. As N increases, the models must fit the data 
more accurately because error variance is so small. This is also true for |t|, but unless N is 
also large, there will be enough uncertainty (i.e., error variance) in p(C) at each time 
value to render the models indistinguishable. 

The top panel of Figure 4 summarizes findings from all 25 experimental designs, 
rank ordered by their mean log odds. The symbols represent the log odds for each of the 
12 model pairings for each design. The legend for the enumerated designs on the x axis is 
in Appendix A, though it is not needed here. It is unlikely that any of the four models 
could be easily distinguished with the first twelve designs (up to #22). Not one log odds 
value exceeds 10.  The next five designs (up to #19) offer a bit more hope, but at best 
only for one or two model pairs. These 17 designs are shown in the upper panel of Figure 
4. Of the 8 most informative designs (bottom panel), it is noteworthy that the only one 
with N < 400 has 13 time intervals (#18), and that the three most distinguishable designs 
all have N >1000. These are the designs of Burtt and Dobell (1925), Rubin et al. (1999), 
and Runquist (1983).  

 
3.4 Distinguishability as a Function of Models 

 
The relative distinguishability of the model pairs can be seen by comparing the 

symbols across designs. When the data were generated by EX, the mean log-odds is 
always near zero when compared to PE (grey circles) or SE (black circles), just  as one 
would expect for nested models. Interestingly, while the EX/SE comparison (white  
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Figure 4. Mean log-odds for all 25 designs and all 12 pairwise comparisons, in order of 
increasing overall distinguishability. The upper panel is a close-up view of the 17 least 
discriminating designs. 
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squares) generally displays one of the highest mean log-odds, the EX/PE comparison 
(white diamonds) rarely fares so well. Together, these findings indicate that, while EX is 
a submodel of both PE and SE, the �extra� PE patterns tend to look a lot more like EX 
patterns than the extra SE patterns. Furthermore, since the black diamonds (SE/PE) are 
generally below the black squares (PE/SE), it appears that SE mimics PE better than the 
reverse. Nevertheless, both comparisons tend to suggest poor distinguishability across all 
designs. 

Turning to the HY model, it is apparent that neither the HY/SE  (grey square) nor 
SE/HY (black triangle) comparisons figure highly in the mean log-odds plots, with the 
implication that, although these models are clearly distinct, they mimic each other fairly  
well. Nevertheless, SE mimics HY better than vice versa. In contrast, the HY/EX (white 
circles) and EX/HY (white triangles) comparisons are much higher up in the plots, 
suggesting greater distinguishability. Interestingly, the white circles (HY/EX) are 
generally higher than the grey squares (HY/SE), implying that HY can mimic SE much 
better than it can mimic EX. Since EX is nested in SE, this is initially confusing, but turns 
out to have a very elegant explanation: The �extra� (non-EX) data patterns generated by 
SE tend to look more like HY patterns than do the EX data patterns. Therefore, when 
sampling data from SE, there is a tendency to get a larger number of HY-like patterns 
than one would if sampling from the EX model. 

Analyses such as these, which can be carried out prior to data collection, provide 
guidance on the combination of N and |t| needed to distinguish pairs of models. For 
example, an N greater than 1000 will be required to distinguish some pairs of models 
(e.g., PE vs SE; HY vs SE), whereas other comparisons (e.g., EX vs HY) can get by with 
a smaller design (N = 250 appears to be sufficient). By stepping back from a particular 
data set and examining the overall data-fitting relationship between models given an 
experimental design, landscaping enhances model testing by revealing the potential 
distinguishability of the models under study.   
 
3.4 Applying the Landscapes to Empirical Data 
 

How do landscapes help with the interpretation of empirical data?  The first step 
in answering this question is to plot the experimental data in the landscape. Recall that 
each point in the landscape represents a data pattern whose location in the graph is 
determined by the relative fits of both models. Experimental data can be overlaid onto the 
graph by fitting both models and then following the same procedure. For a given 
landscape, the further this �experimental data� point is from the criterion, the larger the 
difference in model fits. Empirical data that fall close to the criterion are fit equally well 
by both models. 

Figure 5 displays the HY/SE landscapes for Wixted and Ebbeson�s (1991) design 
on the left, and Peterson and Peterson�s (1959) design on the right, with the empirical 
data (indicated by circles and triangles) overplotted. Despite the similarity between the 
landscapes, the empirical data behave rather differently to one another. In the landscape 
on the right, the data fall close to the tip of the landscape, virtually as far away from the 
criterion line as possible while still remaining in the SE landscape. It is as unlike HY as 
possible while still remaining fairly SE-like. In the landscape on the left (same recall task, 
but different stimuli) the data sets fall within the landscape, but adjacent to the criterion  
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Figure 5. Informative and uninformative data. The data on the left are from Wixted and 
Ebbeson (1991). The data on the right are from Peterson and Peterson (1959). 

 
 
 

line. The SE model fits the data slightly better, but with log-odds values of 0.72 and 0.42, 
it is hardly enough to conclude with confidence that they belong to SE. 

Empirical data will move around in a landscape as a function of the models being 
compared, since each model fits a given data set differently. The graphs in Figure 6 
clearly illustrate this point. They are the same as those in the bottom row of Figure 2, 
except that the data from the two experiments of Burtt and Dobell (1925) are plotted as 
well. The circles represents the location of the data from the recognition experiment and 
the triangles are from the recall experiment. Although neither data set abuts the criterion 
in the left-most graph, the recall data are most useful for discriminating between EX and 
SE. When the EX model is replaced by the HY model, just the reverse is the case. When 
the PE and SE models are compared, neither data set is useful for distinguishing them, as 
both lie next to the criterion line. The landscape itself is especially informative in the 
right-most graph because even though the data do not distinguish between the models, it 
shows the models are distinguishable: Those data patterns that the SE model can fit much 
better than the PE model are further down the landscape. 
 

4. Representativeness Analysis 
 
 Representativeness analysis is a natural extension of landscaping. The aim is to 
attempt to quantify the relationship between the landscape and a data set. That is, the 
landscape can be used to estimate how typical a pair of ML values are of the models 
under consideration. After introducing the measure, we apply it to the 77 historical data 
sets. 
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Figure 6. Data sets move as a function of the competing model. The circles correspond to 
a single empirical data set (from Burtt and Dobell 1925), as do the triangles. The 
landscape data are from the SE model. 
 
 
4.1 Defining Representativeness 
 

The issue of where data fall in a landscape highlights the fact that the most useful 
data are those that are much more representative of one model than another. To be 
representative of a model, data must fall in its landscape. On the basis of the landscapes 
in Figure 6, it would be very strange to recommend the use of one model over another if 
the empirical data did not fall within any of the landscapes, irrespective of what the actual 
ln(ML) values were. If SE tends to generate data in one region of the plot, and the data 
fall outside of it, then SE is probably not a very good account of those data, even if its fit 
is better than any of the competitors�. 

Landscapes can be used to indicate how representative the empirical data are of a 
particular model (or, more precisely, the representativeness of the fits to that data). By 
sampling data from one model and fitting them by it and its competitor, we obtain some 
information about the probability with which the data-fits will end up in a particular 
region of the plot. Therefore, a way to quantify the representativeness of a region is to 
estimate the probability that the relative fit will fall within that region. One effective 
method is to use Gaussian kernels (e.g., Hastie, Tibshirani & Friedman, 2001), in which 
an unknown probability distribution is approximated by a mixture of a large number of 
normal distributions, one for each data set in the landscape (see Appendix B). The result 
is a distribution of fit representativeness, with each point in the landscape having an 
associated probability4.  

When a data set falls inside a representativeness distribution, we learn how 
commonplace the relative fit is in the context of the competing model. Such information 
can be useful to understand the relative fits. For example, empirical data that are located 
in the region of the landscape near the distribution�s peak have relative fit that are quite 
typical. However, when the relative-fit data set falls outside of the representativeness 
distribution, we can take a further step in interpretation and safely conclude that the 
empirical data pattern itself  is very unlikely to have been generated by that model. 
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Because the fits to an empirical data set can be representative of one, both, or 
neither of a pair of models, it is most informative to combine the data from their two 
landscapes (e.g., HY/SE and SE/HY) to assess representativeness. This is accomplished 
simply by plotting both sets of landscape data on the same axes, as illustrated by the 
bottom graph of Figure 7. In this graph, the black dots denote data generated from HY 
using the design of Burtt and Dobell (1925), and the grey dots denote data from SE using 
the same design. Clearly, both models tend to fit their own data better (since the two sets 
of dots are very distinct), but there is some region of overlap in the top right corner. The 
upper plot shows the estimated representativeness distributions (SE in white, HY in grey) 
for the same data. By adding the third dimension, we are better able to understand the 
relationship between the models and data, because we are now shown the probability 
with which data will fall in any given location. 
There are two important points to make about our method. Firstly, notice that the 
representativeness distributions cover a much broader region of the graph than the 
landscapes themselves. This is a deliberate choice. As Box (1976, p. 792) observes: 
�Since all models are wrong the scientist must be alert to what is importantly wrong. It is 
inappropriate to be concerned about mice when there are tigers abroad�. If a model�s 
description of the data is only a little bit wrong, then we have found a mouse, not a tiger. 
With this in mind, we adopted a very liberal policy and gave all models the benefit of the 
doubt when assessing representativeness, thereby minimizing the risk of turning mice 
into tigers.  The second point is a complementary one and pertains to how we dealt with 
tigers. A representativeness value of zero is assigned to all regions that fall �too far� from 
the landscape. Formally speaking, we excluded the most extreme one thousandth of a 
percent of the distribution. The technique is just like setting a rejection region in null 
hypothesis testing, with an extraordinarily low α = 0.00001. The reason for this is that if 
one model assigns a representativeness of 10-50 to the data and another assigns 10-45, the 
correct conclusion is that the data are unrepresentative of both models. Thus we have 
found a tiger. If we simply took the log-odds of these two probabilities, we would arrive 
at the conclusion that the data are 10,000 times more representative of the second model 
than the first. While technically accurate, it is hardly the appropriate lesson to learn from 
such improbable data. 
 
 4.2 Representativeness Analyses of Retention Data 
 

The representativeness of all 77 data sets was measured in the context of all 
model pairs. The results are easiest to interpret when the data sets are divided into three 
categories based on whether they were representative of both, one, or neither model. In 
the first category, representativeness is non-zero for both models (i.e., the data fall inside 
both of the distributions - see Figure 7), allowing quantitative comparisons to be made 
between them. The points will be located in the regions of the landscape where the 
models� distributions overlap. Most of the data sets fall into this category (70%-81%, 
depending on the pair of models under consideration). Figure 8 plots (the logarithm of) 
the representativeness probability of all of these data sets with respect to each pair of 
models. They are laid out identically to the landscape plots of distinguishability, only 
what is plotted is the representativeness (log probability) assigned to each empirical data 
set. Rather than identifying each data set individually with a separate number, they are  
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Figure 7. Representativeness distributions for the HY and SE models. The lower panel 
shows the landscapes for these models (HY in black, SE in grey), and the upper panel 
shows the (very generous) distributions that correspond to the two models. 
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Figure 8. Pairwise comparisons of representativeness probability (densities) when both 
models perform adequately. Numbers denote the design to which the corresponding 
empirical data set belongs.  
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identified by the number corresponding to the design of the experiment in which it was 
generated. Numbers below the diagonal indicate that the observed ML values are more 
typical of the model on the x axis. Just the opposite is the case for data sets above the 
diagonal. 
 

The small range of  log probabilities on both axes indicates that these data sets are 
the mice of our database: The evidence provided by one of these data sets is weak to 
moderate. All are highly and similarly representative of the models. Although the sheer 
number of these minimally informative data sets might seem startling, it should not come 
as a surprise when one considers that all four models fit many of the data sets well (see 
Tables 1 and 2). Inspection of these plots reveals that, in the top row, data tend to fall 
above the line of equal representativeness, suggesting that HY, PE and SE all consistently 
outperform EX by a small margin. The other three plots are less clear. While there is 
some evidence that might suggest that HY and SE outperform PE, it is not particularly 
convincing. There is very little indication that either of HY or SE is superior: HY wins 
more often, but SE�s wins are more decisive. At best, such data tentatively suggest (HY, 
SE) > PE > EX. Perhaps the most important contribution of this first and largest category 
of data sets is to indicate that all models are �near the mark�, in the sense that they satisfy 
the necessary condition of capturing well most of the data sets reported in the empirical 
literature.  

The second category includes those data sets whose ML values are representative 
of one model, to the extent that they are assigned a non-zero representativeness 
probability, but are totally unrepresentative of the other model. These are the data sets 
that fall inside one of the model distributions (as in Figure 7), but not the other.  In these 
cases, it makes little sense to compare representativeness values (or fit values, for that 
matter). Rather, we should simply acknowledge that one model fits the data sufficiently 
well and the other does not. These 13 data sets are listed in Table 2. The model specified 
in each cell provided the superior fit of the pair listed at the top of each column. Those 
marked in bold are instances in which the superior fit was particularly dramatic. In those 
cases, the data fell within the representativeness distribution for one model, but fell so far 
away from the other distribution that � had we not excluded the tails of the distribution � 
the representativeness probability would have been less than 10-40. Once again, a cursory 
look across columns shows that there is clear evidence that EX is inferior to the other 
three models; note the absence of EX in the cells in the first three columns.  The results in 
the last three column suggest that the ranking of the other models should be SE > HY > 
PE. However, this ordering is not decisive since there are data sets in which PE and HY  
are favored over SE. 

The third and smallest category contains the true tigers. Ten data sets, all from 
designs 1, 14 and 15, fell so far outside the landscapes of all four models that they were 
assigned a representativeness probability of zero. There are at least two interpretations of 
such universally unrepresentative data: (a) The data are unrepresentative of all models 
because the data are just too noisy; (b) the data display regularities that are not captured 
by any model. In this latter case, the data do not tell us which model is to be preferred so 
much as indicate that they are all wrong. The retention functions for all ten data sets (3 
studies) are displayed in Figure 9. 
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Table 2. Data that are qualitatively captured by one model, and not by another. 
Boldfaced items indicate decisions in which the evidence in favor of making this decision 
is particularly compelling. 
 
Study ID EX v HY EX v PE EX v SE HY v PE HY v SE PE v SE 

Bregman (1968) e HY PE SE    

Bregman (1968) f   SE  SE SE 

Bregman (1968) g HY  SE HY  SE 

Bregman (1968) h   SE  SE SE 

Burtt & Dobell (1925) b HY PE SE    

Conway et al. (1991) c   SE HY HY SE 

Gehring et al. (1976) a HY PE    PE 

Gehring et al. (1976) b HY PE SE    

Rubin et al. (1999) d   SE  SE SE 

Rubin et al. (1999) e HY  SE HY  SE 

Runquist (1983) c   SE  SE SE 

Strong (1913) a HY PE SE    

Strong (1913) b HY PE SE    

 

 
 

 

 
 
Figure 9. Retention functions from Bahrick et al. (1975) are in the left graph. Those from 
Rubin et al. (1999) are on the right. Data in the middle panel are from Runquist (1983). 
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 The four data sets from Bahrick et al. (1975; left panel) display systematic 
departures from monotonicity, suggesting that the data are fairly noisy. Combined with 
the fact that this was a field study examining long term retention of high school 
acquaintances, it is almost certain that these data were influenced by a great many 
immeasurable factors. In this situation, we might safely conclude that this noise is the 
source of the unrepresentativeness. The cause of the outliers in Runquist (1983; middle 
panel) is less clear-cut, since the study was a little more controlled, and the data do not 
violate monotonicity quite so extensively. However, the violations are large enough to 
conclude that noise was probably a contributing factor to the unrepresentativeness of 
these data. In contrast, the three outliers from the Rubin et al. (1999; right panel) study 
are smooth, monotonic, and highly similar to one another. Since the three nearly-identical 
curves resulted from three nearly-identical experiments, it would appear that noisy data 
are not the cause of the unrepresentativeness. One explanation would be that the data may 
represent a mixture of retrieval from short-term and long-term memory5. Since none of 
the models discussed here is designed to deal with this situation, it is perhaps 
unsurprising that none provide a good account of the data. 

The representativeness analyses provide another example of the usefulness of 
landscaping.  By mapping the relationship between models and data, we gain new 
insights about both. When empirical data fall inside both representativeness distributions, 
we learn that both models can express some of the regularities present in the data. Data 
sets that are representative of only one model take on a great deal of significance in 
discriminating between them. In this way, landscaping adds a new dimension to model 
testing by differentiating data sets in terms of their contribution to distinguishing models. 
Finally, data that are universally unrepresentative indicate a large mismatch between the 
models and the data (which may be due to problems in one or both). Without a landscape, 
this crucial circumstance can be extremely difficult to identify. Although poor fits by 
both models are a good indication that something is amiss, it is not easy to tell when a fit 
is bad enough for the data to be considered unrepresentative of the model. Indeed, Rubin 
et al. (1999) concluded that the SE model provided a very good account of their data 
(though they were ambivalent regarding its overall status), simply because r2 was always 
greater than 0.9. In contrast, the landscaping analysis reveals that the SE model (bounded 
version) accounts only for the recognition data, and that none of the models captures the 
cued recall data.  
 

5. Landscaping as a Design Tool 
 

Up to this point we have discussed landscaping as a method of evaluating past 
research. It can also be used to guide future research. In this section, we briefly describe 
how the method can be used by experimentalists to learn more about the models under 
consideration and how to distinguish them. 

If the goal is to test which of two models is superior, then the landscape and 
representativeness plots can help ascertain how they can be distinguished and the degree 
to which this is possible. To begin with, the locations and sizes of the landscapes will 
reveal the relationship between the models and thus how they can be distinguished. For 
example, if, as in Figure 7, there is an asymmetric relationship between them, data 
capable of discriminating between the models can be generated by one model only, in 
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this case SE. If data are obtained in the center of SE�s landscape, they demonstrate the 
superiority of SE. On the other had, a test of HY would be much more difficult to 
perform because most of the data it generates are fit well by SE. 

As we have seen, the informativeness of empirical data varies a great deal. From a 
model selection standpoint, ideal data would fall within the landscape of only one model 
(i.e., category two in the previous discussion). The ease with which such data can be 
produced in an experiment will depend on a host of factors. Recall that the landscape is 
created by varying the data-generating model's parameters over what is thought to be a 
reasonable range. The family of data patterns will likely be larger than the subset of 
patterns that humans can produce, so experimenters must rely on their knowledge of the 
field to identify regions in the landscape that yield plausible human-like patterns. Once 
these regions have been identified, the experimenter can work backwards from this subset 
of data patterns and design experiments that will yield similarly-shaped patterns of data 
in one of these regions. Inevitably this will require some trial and error on the part of the 
experimenter, who will have to fine-tune the experiment (e.g., by altering stimuli, 
increasing task difficulty, etc.) so that participants produce the desired pattern6.  

This method of experimentation might seem disagreeable because it appears to be 
devoid of theoretical guidance, but most of the time it is likely to be nothing more than 
fine-tuning variables, only it is carried out with knowledge of what the data must look 
like to yield maximally divergent quantitative differences between models. Comparison 
of mathematical models requires a level of precision rarely found in experiments, where 
predictions are most often cast in the form of qualitative, ordinal differences. 
Landscaping is a technique to increase the precision of experimentation so it approaches 
that at which the models themselves operate (i.e., the same unit of measurement). Seen in 
this light, landscaping is a tool intended to aid experimentation by bridging the gap 
between the coarseness of experimentation and exactness of models. 

One way to think about how experimental design influences the landscapes is to 
distinguish between those variables that affect the shape of the landscape and those that 
affect where data fall in the landscape. For these four retention models, only N and t 
affect its shape. Larger samples and more retention intervals increase distinguishability 
(see Figure 3),  providing better conditions under which to collect informative data. 
These conditions may be necessary to distinguish models, but since the relative 
representativeness of the empirical data � defined as the log odds obtained from their 
representativeness probabilities � correlates very weakly with both N and |t| (at 0.05 and 
0.07 respectively), it is clear that they alone are insufficient. 

Other design variables  (e.g., task, stimuli, participants) can affect where data fall 
in the landscape, so it is these that must be manipulated to obtain maximally informative 
data. For example, if changes in task or stimuli produce different data patterns, then they 
will fall in different regions of the landscape. On the other hand, if a variable has no 
effect on performance (e.g., participant age), the data patterns will be identical and yield 
points in the landscape that lie on top of one another. 

It is tempting to analyze the informativeness data to look for systematic effects of 
task and stimuli. Are data from cued recall experiments overall more informative than 
data from recognition experiments? Meta-analyses like this are complicated by the fact 
that other variables were not held constant across experiments. For example, data from 
cued recall experiments consistently yielded the most informative data relative to other 
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tasks (recall and recognition), but these experiments were also the ones with the largest N 
and |t|. Furthermore, even if these other variables were fixed, the relative 
representativeness measure depends not only on experimental design, but the set of 
models being compared, as is illustrated in Figure 6. For these reasons, general 
statements about how other design variables affect model distinguishability and selection 
are difficult to make unless conclusions are restricted to a small set of models. 

In the following two subsections, we illustrate further how landscaping can be 
used as a design tool. Other types of models are used in these analyses to demonstrate the 
generality of the method. The ease with which model complexity can be evaluated in a 
landscape is also discussed. 
 
5.1 Information Integration Models 
 

Consider the task of distinguishing between Oden and Massaro's (1978)  Fuzzy 
Logic Model of Perception (FLMP) and Anderson's (1981) Linear Integration Model 
(LIM), which are primarily concerned with questions of stimulus identification. A classic 
example is the perception of speech when participants see and hear a talker speak a 
syllable. How is the auditory and visual information combined into a single percept (e.g. 
was it a /ba/ or a /da/)?  

Suppose that we decide to try a two-choice categorization task (i.e. choose A or B) 
with a two by eight design, and 24 participants. This design involves two different levels 
of one information source (e.g., visual) and eight different levels of the other (e.g., 
auditory). Thus there are a total of 16 stimuli that may be produced by combining the two 
evidence sources. Letting pij denote the probability of responding A when presented with 
the i-th level of one source and the j-th level of the other, FLMP is characterized by the 
equation pij = θiλj / (θiλj + (1- θi)(1- λj)), whereas LIM predicts that pij = (θi + λj)/2. The 
top panel of Figure 10 displays the results of a landscaping analysis for this experimental 
design, in the form of representativeness plots for FLMP and LIM. The two distributions 
overlap partially, indicating that there is a fundamental indiscriminability of the models 
using this design. Worse, ML is a poor criterion because 30% of the LIM distribution 
falls on the wrong (FLMP) side of the decision line.  

A minor alteration remedies this situation. The preceding design does not ask 
how participants would respond when only one source of evidence is provided, even 
though the models make different predictions in these circumstances. LIM predicts pi = θi 
whereas FLMP predicts that pi = θi / (1- θi). By adding the 10 extra �unimodal� stimuli 
(two visual alone and eight auditory alone) to the design and then repeating the 
representativeness analysis, we obtain the plots in the lower panel of Figure 10. Clearly, 
the new design is far better able to discriminate between FLMP and LIM. The 
distributions barely overlap, and the ML decision line separates them quite effectively. 
The FLMP data are all on the correct side of the line, and only 1% of the LIM data are on 
the wrong side. This design is far more likely to  distinguish the models and has the 
attractive property of being able to collect data that  clearly favor one model or the other 
because both representativeness regions are distinct (see Navarro et al., 2003, for details). 
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Figure 10. Representativeness plots for data sampled from FLMP (in grey) and LIM (in 
white) for two different experimental designs. Solid lines denote the ML decision 
thresholds, and broken lines denote the complexity-adjusted thresholds. 
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Notice that the decision threshold depends on the measure used to choose between 
models. ML, like all measures that are based solely on goodness-of-fit, is biased in favor 
of the more complex model: That is, the model which is more adept or flexible in fitting 
data. This is very evident in the first design, where 30% of the LIM data sets are on the 
FLMP side of the threshold. This problem can be remedied by calculating the 
complexities of the models and then shifting the decision criterion upward or downward 
to correct for the difference (note that complexity is a property of the model and the 
experimental design). After calculating the �geometric complexity� measure discussed by 
Pitt et al. (2002), we found that the criterion should be shifted towards the FLMP 
distribution7 by 1.88 (the adjusted criterion is indicated in the plots by the broken line). 
Although the correction is small, the improvement is dramatic because the LIM 
distribution is so peaked: The LIM error rate falls to 3.5% whereas the FLMP error rate 
rises to only 0.3%. 

Contrastingly, in the lower panel of Figure 10, ML makes no errors on FLMP 
data, and only 1% errors on LIM data. Calculating geometric complexity for this design 
suggests that the criterion line should be shifted by 4.86 towards the FLMP distribution. 
However, the improvement that this produces is fairly small, with 0.2% errors on FLMP 
data and 0.01% errors on LIM data. This is because the models are highly discriminable 
in this design, so a large complexity difference has little effect. Since it can be difficult to 
calculate geometric complexity (but see Su, Myung & Pitt, in press), it is nice to note that 
landscaping can be used to find out when it is really needed: The potential impact of 
complexity to be gauged simply by moving the criterion upward and downward8. 
 
5.2 Categorization Models 
 

As a final example we consider two slightly more complex models, interesting 
properties of which come to light when landscaped. These are Nosofsky�s (1986) 
Generalized Context Model (GCM), and an extension of this model, GCM-γ (Minda & J. 
Smith 2002; Shin & Nosofsky, 1992). In the GCM, the probability that stimulus i is 
judged to belong to category K is proportional to its similarity to the exemplars that are 
known to belong to that category. That is,  
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In the GCM-γ model, the probability of category membership is assumed to be 
proportional to some power γ of the similarity-to-exemplars:  
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Obviously, the GCM is a special case of the GCM-γ when γ = 1. In both models, 
similarity is assumed to decline exponentially with distance in a psychological space 
(Shepard 1987). In this example, we used the six-dimensional spatial representation 
employed in Shin and Nosofsky�s (1992) Experiment 1. As with previous examples, we 
sampled data sets from Jeffreys� distribution and used these to construct landscapes for 
both models (Fisher information results are presented by Su et al., in press).  
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Figure 11. Representativeness plots for data sampled from GCM (in grey) and GCM-γ 
(in white). The solid line denotes the ML decision threshold, and the broken line denotes 
the complexity-adjusted threshold. The inset panel shows a top-down view of the same 
plots. 
 
 
 

The representativeness distributions for these models are shown in Figure 11. As 
is immediately apparent, the models are remarkably different from each other. This is 
true despite the fact that GCM is nested within GCM-γ,  arising because the γ parameter 
adds a large set of new data patterns that GCM-γ can produce and GCM cannot. This set 
is so large that GCM-like patterns are very atypical of GCM-γ. 

Comparison of the solid decision threshold (ML) to the broken one (complexity 
adjusted) reveals that the latter is far superior. Since the models are nested, ML classifies 
all patterns as GCM-γ. To compensate for complexity differences between the models, 
the criterion line should be shifted by 5.2 units, resulting in a drop in error rate, 0% for 
GCM-γ data, but still 67% for GCM data. While this is clearly a substantial 
improvement, it leaves a great deal to be desired. 

Why was the complexity adjustment not better? Inspection of the 
representativeness landscapes in Figure 11 reveals that complexity only partly accounts 
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for the differences between the models. Complexity measures consider the relationship 
between a model and data, but do not consider the interrelationship between models. The 
result is that in this kind of model discrimination task, a complexity measure can suggest 
only a constant correction to the ML decision threshold. In this case, however, GCM and 
GCM-γ have a complicated relationship with each other as well as the data. As is clear 
from the top-down view shown in the inset of Figure 11 (looking down on the 
distributions from above), the tails of the GCM-γ distribution �wrap around� the GCM 
distribution. Because the GCM distribution is so sharply defined, almost any pattern 
inside that region (which is basically a semi-circular area) is more representative of 
GCM: Anything outside of this area is more representative of GCM-γ. Therefore, the best 
way to discriminate between these models would be to define a nonlinear decision 
threshold along the borders of this semi-circular region. Measures of model complexity 
cannot achieve this.  
 

6. General Discussion 
 

Advancement in psychology requires good models and good data. It also requires 
good methods of integrating the two. Landscaping connects the them by answering 
questions such as, �What is the relationship between models and data?� and �How 
representative are data of a model?� The nature of these questions should make it obvious 
that landscaping focuses on the global behavior of a model, not on a model�s data-fitting 
performance in a single setting. 

Perversely, these questions become more pressing and harder to answer the better 
we do our jobs as scientists. The retention literature is a good example of this. With over 
a century�s worth of data collected, there is little doubt that retention follows a smooth, 
convex, monotonically decreasing function, and its long-run behavior should be slower-
than-exponential (Jost�s law; see Alin 1997). Beyond this, it is difficult to discriminate 
between models that satisfy these constraints if a model�s fit to data is used as the sole 
criterion on which to choose a model. Data-fitting all by itself, as we illustrated at the 
beginning of the paper (Table 1)  is simply is not a good tool for discriminating closely 
competing models. It is inappropriate given the demands of the job because to advance 
the science, we need to know more about the models and data than can be learned from 
fit alone. Landscaping was designed with this goal in mind. 

Analyses of the 77 data sets in the context of four leading retention models not 
only showed how (in)distinguishable the models are, but also demonstrated how 
experimental design variables, such as N and t, affect distinguishability. For 
discriminating retention models, N is more effective than t. Representativeness analyses, 
in which prior data were merged with the landscapes, enabled us to determine how 
informative data are in distinguishing pairs of models. The fits to most data sets (70% or 
more depending on the pair of models being compared) are highly typical of those 
observed of data generated by all models. Although these data are not very useful for 
distinguishing between models, they do show that all models can capture some aspects of  
the process underlying retention. A much smaller number of data sets (17%) proved 
much more informative, providing clear evidence in favor of one model over another. 
The results (Table 2) are fairly orderly and suggest a ranking of SE > HY > PE > EX. 
However, the analyses also revealed that the impressively reliable data of Rubin et al. 
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(1999) are unrepresentative of all models: None of these models could plausibly have 
generated these data. This indicates that even the best models are incomplete in their 
description of the form of the retention function. 

The knowledge that landscaping contributes about the relationship between 
models and the representativeness of data fits can be used to choose the next course of 
action in modeling retention. If the goal is to propose a new model, then it is not enough 
for the model to fit the data better than it competitors (SE can do that), it is also necessary 
to show that the data fits are representative of this model (i.e., it could plausibly have 
generated them). If the goal is to collect new data to decide between the top two models, 
for example, one should identify an experimental design that yields landscapes that do 
not completely overlap, inspect data sets in these non-overlapping regions, and then 
design an experiment to yield such data. 

The preceding discussion brings out the point that landscaping can be used to 
improve postdiction and prediction in experimentation, serving as a bridge between 
model and data. Postdiction is a common form of model evaluation in psychology. 
Landscaping makes such tests more stringent because it imposes the additional condition 
that the data are representative of the new model, not just that the model fitted the data 
better than its competitors. Prediction is an even more stringent and convincing test of 
model adequacy because the data have not yet been collected. Landscaping provides the 
means to identify optimal tests by determining the experimental conditions that will be 
most favorable to generating data that are more representative of one model than another. 

Even with an intimate knowledge of a field, it can be difficult to predict the 
impact of specific variables on performance. Landscaping allows one to learn how some 
design changes will affect model distinguishability. Without this knowledge, the effect of 
specific manipulations are unknown and can even be misunderstood, as we demonstrated 
with sample size. An increase in N is not guaranteed to improve model distinguishability. 
It reduces error variance, which should assist in distinguishing models, but unless the 
data are representative of one and only one model, the outcome of the experiment may be 
disappointing. This situation could be prevented by first viewing the relevant landscapes, 
which collectively would suggest at least one course of action, even if it means trying 
something else. 

The brief examples of landscaping information integration models and 
categorization models demonstrate the impact model complexity can have on the 
landscape and the tool�s wider applicability. As is shown in Figures 10 and 11, a 
landscape plot is tailor-made for not only displaying but also evaluating the effects of 
model complexity on model distinguishability. The criterion shifts toward the more 
complex model by the amount it exceeds its competitor in complexity. The effect of this 
adjustment will be substantial if the distribution of at least one model is concentrated on 
or near the criterion. Otherwise they probably will be negligible.  When used for this 
purpose, landscaping provide an easy means with which to evaluate the impact 
complexity might have on model selection without having to calculate complexity, which 
can be challenging. 

The method of landscaping described in this paper is applicable to statistical 
models (i.e., those for which there exists a likelihood function). As a tool, landscaping is 
in principle applicable to any type of model (e.g., connectionist, qualitative). The 
necessary ingredients are a way to express the performance relationship between the 
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models themselves and also with experimental data. We are currently developing a 
method to landscape localist connectionist models. Details of this work can be found in 
W. Kim, Navarro, Pitt and Myung (in press). 
 

 
References 

 
Alin, L. (1997). The memory laws of Jost. Technical Report: Götebotg Psychological 
Reports, 27, no. 1. 
 
Anderson, J. R. & Schooler, L. J. (1991). Reflections of the environment in memory. 
Psychological Science, 2, 396-408. 
 
Anderson, N. H. (1981). Foundations of Information Integration Theory. New York: 
Academic Press. 
 
Ashby, F. G., Maddox, W. T. & Lee, W. W. (1994). On the dangers of averaging across 
subjects when using multidimensional scaling or the similarity-choice model. 
Psychological Science 5, 144-151. 
 
Bahrick, H. P., Bahrick, P. O. & Wittlinger, R. P. (1975). Fifty years of memory for 
names and faces: A cross-sectional approach. Journal of Experimental Psychology: 
General, 104, 54-75. 
 
Balasubramanian, V. (1997). Statistical inference, Occam�s razor, and statistical 
mechanics on the space of probability distributions. Neural Computation, 9, 347-368. 
 
Box, G. E. P. (1976). Science and statistics. Journal of the American Statistical 
Association, 71, 791-799. 
 
Bregman, A. S. (1968). Forgetting curves with semantic, phonetic, graphic, and 
contiguity cues. Journal of Experimental Psychology, 78, 539-546. 
 
Brown, S. & Heathcote, A. (2003). Averaging learning curves across and within 
participants. Behavior Research Methods, Instruments and Computers, 35, 11-21. 
 
Burtt, H. E. & Dobell, E. M. (1925). The curve of forgetting for advertising material. 
Journal of Applied Psychology, 9, 5-21. 
 
Conway, M. A., Cohen, G. & Stanhope, N. (1991). On the very long term retention of 
knowledge acquired through formal education: Twelve years of cognitive psychology. 
Journal of Experimental Psychology: General, 120, 395-409. 
 
de Bruijn, N. G. (1958). Asymptotic Methods in Analysis. Amsterdam: North-Holland. 
 



Model Distinguishability   32 

Estes, W. K. (1956). The problem of inference from curves based on group data. 
Psychological Review 53, 134-140. 
 
Gehring, R. E., Toglia, M. P. & Kimble, G. A. (1976). Recognition memory for words 
and pictures at short and long retention intervals. Memory & Cognition, 4, 256-260. 
 
Geweke, J. (1999a). Using simulation methods for Bayesian econometric models: 
Inference, development and communication. Econometric Review, 18, 1-126. 
 
Geweke, J. (1999b). Simulation methods for model criticism and robustness analysis. In 
J. O. Berger, J. M. Bernardo, A. P. Dawid, and A. F. M. Smith (eds) Bayesian Statistics 6 
(pp. 275-299). Oxford: Oxford University Press. 
 
Gilks, W. R. , Richardson, S., & Spiegelhalter, D. J. (1995). Markov Chain Monte Carlo 
in Practice. London: Chapman and Hall.  
 
Gill, J. (2002). Bayesian Methods: A Social and Behavioral Sciences Approach. Boca 
Raton: Chapman & Hall. 
 
Grünwald, P. (2000). Model selection based on minimum description length. Journal of 
Mathematical Psychology, 44, 133-151. 
 
Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of Statistical Learning. 
New York: Springer-Verlag. 
 
Jeffreys, H. (1961). Theory of Probability (3rd ed.). London: Oxford University Press. 
 
Kass, R. E. & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical 
Association, 90, 773-795. 
 
Kass, R. E. & Wasserman, L. (1996). The selection of prior distributions by formal rules. 
Journal of the American Statistical Association, 91, 1343-1370. 
 
Kim, W., Navarro, D. J., Pitt, M. A. & Myung, I. J. (in press). An MCMC-based method 
of comparing connectionist models in cognitive science. Advances in Neural Information 
Processing Systems, 16. 
 
Krueger, W. C. F. (1929). The effect of overlearning on retention. Journal of 
Experimental Psychology, 12, 71-78. 
 
Lee, M. D. & Pope, K. J. (2003). Avoiding the dangers of averaging across subjects when 
using multidimensional scaling. Journal of Mathematical Psychology,47, 32-46. 
 
Longmore, B. E. & Knight, R. G. (1988). The effect of intellectual deterioration on 
retention deficits in amnesic alcoholics. Journal of Abnormal Psychology 97, 448-454. 
 



Model Distinguishability   33 

Luh, C. W. (1922). The conditions of retention. Psychological Monographs, 31, whole 
no. 142. 
 
McClelland, J. L. & Elman, J. L. (1986). The TRACE model of speech perception. 
Cognitive Psychology, 18, 1-86. 
 
MacLeod, C. M. (1988). Forgotten but not gone: Savings for pictures and words in long 
term memory. Journal of Experimental Psychology: Learning, Memory and Cognition, 
14, 195-212. 
 
Minda, J. P. & Smith, J. D. (2002). Comparing prototype-based and exemplar-based 
accounts of category learning and attentional allocation. Journal of Experimental 
Psychology: Learning, Memory, & Cognition, 28, 275-292. 
 
Murdock, B. B. Jr (1961). The retention of individual items. Journal of Experimental 
Psychology 62, 618-625. 
 
Murray, M. K. & Rice, J. W. (1993). Differential Geometry and Statistics. London: 
Chapman & Hall. 
 
Myung, I. J. (2003).  Tutorial on maximum likelihood estimation. Journal of 
Mathematical Psychology , 47, 90-100. 
 
Myung, I. J., Balasubramanian, V., & Pitt, M. A. (2000). Counting probability 
distributions: Differential geometry and model selection. Proceedings of the National 
Academy of Sciences USA, 97, 11170-11175. 
 
Myung, I. J., Kim, C., & Pitt, M. A. (2000). Toward an explanation of the power-law 
artifact: Insights from response surface analysis. Memory & Cognition, 28 , 832-840. 
 
Myung, I. J. & Pitt, M. A. (1997). Applying Occam's razor in modeling cognition: A 
Bayesian approach. Psychonomic Bulletin & Review, 4 , 79-95. 
 
Navarro, D. J. (submitted). Misbehavior of the Fisher information apprioximation to 
minimum description length. Submitted to Neural Computation. 
 
Navarro, D. J., Myung, I. J., Pitt, M. A., & Kim, W. (2003). Global model analysis by 
landscaping. Proceedings of the 25th Annual Conference of the Cognitive Science 
Society. 
 
Nocedal, J. & Wright, S. J. (1999). Numerical Optimization. New York: Springer-Verlag. 
 
Norris, D., McQueen, J. M. & Cutler, A. (2000). Merging phonetic and lexical 
information in phonetic decision-making. Behavioral & Brain Sciences, 23, 299-325. 
 



Model Distinguishability   34 

Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization 
relationship, Journal of Experimental Psychology: General, 115, 39-57. 
 
Oden, G. C., & Massaro, D. W. (1978). Integration of Featural Information in Speech 
Perception. Psychological Review, 85, 172-191. 
 
Peterson, L. R. & Peterson, M. J. (1959). Short term retention of individual verbal items. 
Journal of Experimental Psychology 58, 193-198. 
 
Pitt, M. A., Kim, W., & Myung, I. J. (2003). Flexibility vs generalizability in model 
selection. Psychonomic Bulletin & Review, 10, 29-44. 
 
Pitt, M. A., Myung, I. J., & Zhang, S. (2002). Toward a method of selecting among 
computational models of cognition. Psychological Review, 109(3) , 472-491. 
 
Raftery, A. E. (1995). Bayesian model selection in social research. In P. V. Marsden 
(Ed.), Sociological Methodology, (p. 111-196). Oxford: Blackwell. 
 
Ratcliff, R. & Smith, P. (in press). A comparison of sequential sampling models for two-
choice reaction time. Psychological Review. 
 
Rissanen, J. (1996). Fisher information and stochastic complexity. IEEE Transactions on 
Information Theory, 42, 40-47. 
 
Rissanen, J. (2001). Strong optimality of the normalized ML models as universal codes 
and information in data. IEEE Transactions on Information Theory 47, 1712-1717. 
 
Robert, C. P. (2001). The Bayesian Choice (2nd ed.). New York: Springer. 
 
Rubin, D. C., Hinton, S. & Wenzel, A. (1999). The precise time course of retention. 
Journal of Experimental Psychology: Learning, Memory & Cognition 25, 1161-1176. 
 
Rubin, D. C. & Wenzel, A. (1996). One hundred years of forgetting: A quantitative 
description of retention. Psychological Review, 103, 734-760. 
 
Runquist, W. (1983). Some effects of remembering on forgetting. Memory & Cognition, 
11, 641-650. 
 
Shepard, R. N. (1987). Toward a universal law of generalization for psychological 
science. Science, 237, 1317-1323. 
 
Shin, H. J. & Nosofsky, R. M. (1992). Similarity-scaling studies of dot-pattern 
classification and recognition. Journal of Experimental Psychology: Learning, Memory 
and Cognition, 121, 278-304. 
 



Model Distinguishability   35 

Sikström, S. (2002). Forgetting curves: Implications for connectionist models. Cognitive 
Psychology 45, 95-152. 
 
Sloman, S. A., Hayman, C. A. G., Ohta, N., Law, J. & Tulving, E. (1988). Forgetting in 
primed fragment completion. Journal of Experimental Psychology:  Learning, Memory & 
Cognition, 11, 812-816. 
 
Squire, L. R. (1989). On the course of forgetting in very long term memory. Journal of 
Experimental Psychology: Learning, Memory & Cognition, 15, 241-245. 
 
Steyvers, M., Tenenbaum, J. B., Wagenmakers, E. J. & Blum, B (2003). Inferring causal 
networks from observations and interventions. Cognitive Science, 27, 453-489. 
 
Strong, E. K. (1913). The effect of time interval upon recognition memory.  
Psychological Review, 30, 339-32. 
 
Su, Y., Myung, I. J. & Pitt, M. A. (in press). Minimum description length and cognitive 
modeling. In P. Grünwald, I. J. Myung, I. J., & M. A. Pitt (eds.) Advances in Minimum 
Description Length: Theory and Applications. MIT Press. 
 
Thompson, C. P. (1982). Memory for unique personal events: The roommate study. 
Memory & Cognition, 10, 324-332. 
 
Wagenmakers, E. J., Ratcliff, R., Gomez, P. & Iverson, G. J. (in press). Assessing model 
mimicry using the parametric bootstrap. Journal of Mathematical Psychology. 
 
Wickelgren, W. A. (1968). Sparing of short-term memory in an amnesiac patient: 
Implications of strength theory of memory. Neuropsychologica, 6, 235-244. 
 
Wickelgren, W. A. (1972). Trace resistance and decay of long-term memory. Journal of 
Mathematical Psychology, 9, 418-455. 
 
Wixted, J. T. & Ebbesen, E. B. (1991). On the form of forgetting. Psychological Science, 
2, 409-415. 
 
Wixted, J. T. & Ebbesen, E. B. (1997). Genuine power curves in forgetting: A 
quantitative analysis of individual subject forgetting functions. Memory & Cognition, 25, 
731-739. 



Model Distinguishability   36 

Author Note 
 
The authors were supported by NIH grant R01-MH57472 awarded to IJM and MAP. 
DJN was also supported by a grant from the Office of Research at OSU. We would like 
to thank Nancy Briggs, Woojae Kim, Yong Su, Eric-Jan Wagenmakers, John Wixted, 
and two anonymous reviewers for helpful comments and insights that substantially 
improved the paper. DJN would also like to thank Marcus Butavicius for his thoughts on 
experimental design. Correspondence concerning this article can be addressed to any of 
the authors at Department of Psychology, Ohio State University, 1827 Neil Avenue, 
Columbus OH 43210, USA. E-mail: navarro.20@osu.edu, pitt.2@osu.edu, 
myung.1@osu.edu. 



Model Distinguishability   37 

Footnotes 
 
 
1 As an aside, we note that in many cases r2 or d�  will be appropriate, and there is no reason in 
principle why the methods introduced in this paper could not accommodate them. 
 
2 The other two recognition curves from that paper were not used here because they introduce an 
extra complication to the analysis. The two recognition data sets that we have used are simple 
retention data and can be treated as independent near-replications. In contrast, the �remember 
only� and �know only� data are not independent of the �remember + know� data. 
 
3 Our interpretations in this section are based on the scale suggested by Jeffreys� (1961; see also 
Raftery 1995), referring to standards of evidence in science. The relevant qualification is that the 
scale originally corresponded to marginal likelihoods, not maximum likelihoods, which is the 
source of our �difference in numbers of parameters� disclaimer. 
 
4  Strictly, what is obtained is a probability density, not a probability. A probability density is the 
continuous version of a probability. Thus, whereas probabilities sum to 1, probability densities 
integrate to 1. As a result, it is possible for a probability density function to exceed 1, so long as 
the definite integral across any interval is less than or equal to 1. 
 
5 We thank John Wixted for suggesting this interpretation. 
 
6 Curiously, this concept is not unrelated to the idea of �active learning� in human inference 
(Steyvers, Tenenbaum, Wagenmakers & Blum, 2003).  
 
7  This number differs substantially from that reported by Pitt et al. (2002). The reason for this is 
that we have incorporated order constraints on the parameters, whereas Pitt et al. did not. 
 
8 Readers may wonder why a complexity analysis for the retention functions was not presented. 
The reason lies in the technical assumptions that underlie the geometric complexity measure. The 
measure derived by Myung et al. (2000) is a ratio of two Riemannian volumes: The volume 
occupied by the model in the space of probability distributions, and a small ellipsoid near the 
maximum likelihood parameters. The derivation implicitly requires that the extension of the 
model volume be much larger than the small ellipsoid in every dimension (which is always true 
as N becomes arbitrarily large). However, some unusual behavior of the geometric complexity for 
the retention functions led us to suspect that this assumption is often violated in the set of designs 
that we considered (see Navarro, submitted). Given this, we did not feel it was appropriate to 
compare complexity differences for these models. Nevertheless, for the designs with large Ns and 
|t| (e.g. design numbers 1, 5, 14, 15, and 17), in which this problem is unlikely to be too severe, 
the ordering of complexity was always SE > PE > EX > HY. 
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Appendix A: Summary of Database 

 
Design Source Mean N |t| ID Participants Stimuli Task Notes 
1 Bahrick et al. (1975) 436 9 a elderly  pictures recognition yearbook pictures 
1 Bahrick et al. (1975) 436 9 b elderly  word strings recognition names of people from yearbook 
1 Bahrick et al. (1975) 436 9 c elderly  words + pictures matching names and yearbook pictures: face->name 
1 Bahrick et al. (1975) 436 9 d elderly  words + pictures matching names and yearbook pictures: name->face 
1 Bahrick et al. (1975) 436 9 e elderly  words + pictures free recall  
2 Bregman (1968) 92 8 a undergrads words cued recall semantic association 
2 Bregman (1968) 92 8 b undergrads words cued recall stem completion 
2 Bregman (1968) 92 8 c undergrads words cued recall phonetic (rhyming) association 
2 Bregman (1968) 92 8 d undergrads words cued recall associate (contiguity) 
2 Bregman (1968) 92 8 e undergrads words cued recall paired association varied across blocks 
2 Bregman (1968) 92 8 f undergrads words cued recall paired association varied across blocks 
2 Bregman (1968) 92 8 g undergrads words cued recall paired association varied across blocks 
2 Bregman (1968) 92 8 h undergrads words cued recall paired association varied across blocks 
3 Burtt & Dobell (1925) 1160 5 a undergrads words recognition paired associates learned previously 
3 Burtt & Dobell (1925) 1160 5 b undergrads words cued recall paired associates learned previously 
4 Conway et al. (1991) 187 12 a adults words recognition names 
4 Conway et al. (1991) 187 12 b adults words recognition concepts 
4 Conway et al. (1991) 187 12 c adults words recall names 
4 Conway et al. (1991) 187 12 d adults words recall concepts 
4 Conway et al. (1991) 187 12 e adults words verification  
4 Conway et al. (1991) 187 12 f adults words verification  
5 Gehring et al. (1976) 1447 6 a undergrads pictures recognition  
5 Gehring et al. (1976) 1447 6 b grads words recognition nouns denoting the pictures 
6 Krueger (1929) 280 6 a grads words recall 100% overlearn: monosyllables 
6 Krueger (1929) 280 6 b grads words recall 150% overlearn: monosyllables 
6 Krueger (1929) 280 6 c grads words recall 200% overlearn: monosyllables 
7 Longmore & Knight (1988) 240 5 a adults words recall normals: monosyllables 
7 Longmore & Knight (1988) 240 5 b adults words recall Korsakoffs; monosyllables 
8 Longmore & Knight (1988) 120 5  adults words recall alcoholics with no signs of Korsakoffs; monosyllables 
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Design Source Mean N |t| ID Participants Stimuli Task Notes 
9 Luh (1922) 240 5 a grads trigrams antic. recall no learning 
9 Luh (1922) 240 5 b grads trigrams free recall no learning 
9 Luh (1922) 240 5 c grads trigrams recognition no learning 
9 Luh (1922) 240 5 d grads trigrams ordering no learning 
9 Luh (1922) 240 5 e grads trigrams free recall % of previous learning: 100 
9 Luh (1922) 240 5 f grads trigrams recognition % of previous learning: 100 
9 Luh (1922) 240 5 g grads trigrams ordering % of previous learning: 100 
9 Luh (1922) 240 5 h grads trigrams free recall % of previous learning: 67 
9 Luh (1922) 240 5 i grads trigrams recognition % of previous learning: 67 
9 Luh (1922) 240 5 j grads trigrams ordering % of previous learning: 67 
9 Luh (1922) 240 5 k grads trigrams free recall % of previous learning: 33 
9 Luh (1922) 240 5 l grads trigrams recognition % of previous learning: 33 
9 Luh (1922) 240 5 m grads trigrams ordering % of previous learning: 33 
10 Luh (1922) 240 7 a grads trigrams free recall % of previous learning: 150 
10 Luh (1922) 240 7 b grads trigrams recognition % of previous learning: 150 
11 MacLeod (1988) 320 5  undergrads word + pictures recognition paired associates: words were numbers 
12 Murdock (1961) 192 6 a undergrads trigrams recall backward counting interference 
12 Murdock (1961) 192 6 b undergrads words recall backward counting interference 
12 Murdock (1961) 192 6 c undergrads word triads recall backward counting interference 
12 Murdock (1961) 192 6 d undergrads words recall varied # prior words in list 0 
12 Murdock (1961) 192 6 e undergrads words recall varied # prior words in list 3 
12 Murdock (1961) 192 6 f undergrads words recall varied # prior words in list 6 
12 Murdock (1961) 192 6 g undergrads words recall varied # prior words in list 9 
12 Murdock (1961) 192 6 h undergrads words recall varied # prior words in list 12 
13 Peterson & Peterson (1959) 192 6  undergrads trigrams recall backward counting interference 
14 Rubin et al. (1999) 900 10 a undergrads words cued recall paired associates in same color 
14 Rubin et al. (1999) 900 10 b undergrads words cued recall all words white font 
14 Rubin et al. (1999) 900 10 c undergrads words cued recall words in random colors 
14 Rubin et al. (1999) 900 10 d undergrads words recognition old-new recognition 
14 Rubin et al. (1999) 900 10 e undergrads words recognition remember-know recognition 
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Design Source Mean N |t| ID Participants Stimuli Task Notes 
15 Runquist (1983) 1728 6 a undergrads words cued recall paired associates seen  3x previously and tested 
15 Runquist (1983) 1728 6 b undergrads words cued recall paired associates seen  1x previously and tested 
15 Runquist (1983) 1728 6 c undergrads words cued recall paired associates seen  3x previously and not tested 
15 Runquist (1983) 1728 6 d undergrads words cued recall paired associates seen  1x previously and not tested 
16 Sloman et al. (1988) 672 14  grads words completion fragments presented in reverse order 
17 Squire (1989) 1078 15  UG, elderly word strings recognition names of TV shows (mean age 41) 
18 Strong (1913) 100 13 a adults words recognition recognize from a list twice as long as the study list 
18 Strong (1913) 100 13 b adults words recognition recognize from a list twice as long as the study list 
19 Strong (1913) 40 13 a adults words recognition recognize from a list twice as long as the study list 
19 Strong (1913) 40 13 b adults words recognition recognize from a list twice as long as the study list 
20 Strong (1913) 20 13  adults words recognition recognize from a list twice as long as the study list 
21 Thompson (1982) 128 9  undergrads dates recognition memorable events generated by college roommate 
22 Wixted & Ebbeson (1991) 432 5 a undergrads words recall learned list well before test 
22 Wixted & Ebbeson (1991) 432 5 b undergrads words recall learned list poorly before test 
23 Wickelgren (1968) 46 8  H.M. spoken digits recognition determine whether 1 digit was in the list 
24 Wickelgren (1968) 40 5  H.M. spoken digits recognition determine whether 3 digit number was in a list of 5 
25 Wickelgren (1968) 50 7  H.M. spoken digits recognition determine whether 3 digit number was in a list of 7 
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Appendix B: Statistical Comments 
 
B.1 Jeffreys’ Prior and Worst-Case Inference 
 
 In this paper we have sampled parameter sets from Jeffreys� (1961) distribution, 
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Using Jeffreys� distribution as a prior over the parameters is common in Bayesian 
statistics, partly because it is reparameterization-invariant, but also because it is a uniform 
distribution on the space of probability distributions (Balasubramanian, 1997). It is in this 
sense that Jeffreys� distribution is a �worst case� (or noninformative) distribution. Under 
Jeffreys� prior, the amount of prior uncertainty about the probability distribution p( · | M, 
θ) is maximized. This differs from the uniform distribution, which maximizes uncertainty 
about θ. Since it is generally acknowledged that parameters of a model are rather 
arbitrary �indexing tools�, it is better to work with the probability distributions 
themselves when justifying a prior. We have chosen Jeffreys� prior here because it treats 
each (distinguishable) probability distribution equally.  

It is worth noting that this issue falls within the larger question of how to set 
reasonable priors for Bayesian inference (see Kass & Wasserman for a thorough 
discussion). While this matter is beyond the scope of this paper, we note in passing that it 
is often worth considering a number of different priors, in order to check that the results 
are not unduly influenced by the prior. In general, however, we feel that �worst-case� 
priors are a reasonable first choice. 

Unfortunately, these desirable properties can come at a cost: In some cases it is 
difficult to sample from Jeffreys� distribution, and may require Markov Chain Monte 
Carlo methods (MCMC; see Gilks, Richardson & Spiegelhalter, 1995). Fortunately, 
MCMC is now a standard technique in statistics, available through widely-available 
software such as BUGS. In other cases, such as when the error distribution is normal, 
closed forms are available, making the sampling simpler. 
  
B.2 Landscaping and Bayesian Marginals 
 

We briefly discuss the connections between landscaping and Bayesian statistics 
(e.g., Gill 2002, Robert 2001). Although the basic statistical foundations of the technique 
are established here, it would be nice to explore this further, pursuing the connections 
with Bayesian methods and Minimum Description Length (e.g. Grünwald 2000; Rissanen 
1996). From a Bayesian perspective, one defines the predictive distribution for the data 
as,  

∫= θθθ dMpMDpMDp )|(),|()|( . 
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This states that the data D are sampled from M according to its marginal distribution. It is 
well-known that, because they consider the behavior of the model across its entire 
parameter space (i.e., by adopting a global model analysis), Bayesian approaches are able 
to identify and compensate for model complexity (Myung & Pitt, 1997). 

Notice, however, that the landscaping approach also specifies a prior distribution 
p(θ | M), from which the parameters are sampled, and a likelihood function p(D | M, θ) 
from which the data are generated. In short, landscape data are sampled from the 
Bayesian marginal distribution p(D | M). In this sense, there is a direct connection 
between landscaping and Bayesian model selection. 

As a final note, this observation allows us to make the notion of 
�distinguishability� a little more explicit. Under one definition, two models would be 
indistinguishable if they both contained the data-generating distribution. We prefer not to 
use this definition, since it would allow one to �cheat�, by proposing very elaborate 
models that incorporate an enormous number of distributions. Rather, we adopt the 
�universal distribution� approach (e.g. Rissanen 2001), in which a family of distributions 
can be �summarized� by a single distribution. In this case, the marginal distribution p(D | 
M) is a universal distribution. Under this approach, two models are considered to be 
indistinguishable if their universal distributions are highly similar to one another.  
 
B.3 Representativeness and Partial Information Bayes. 

 
Suppose, however, that we were not interested the likelihood of the data itself p(D 

| M). Rather, we were interested in the likelihood of the fits to that data for two models, x 
and y. That is, x = ln p(D | MX, θ*) and y = ln p(D | MY, θ*), the maximum log-likelihood 
for the data obtained under the models. The quantity that we are interested in is the 
probability of observing both x and y if the data were truly generated from MX. This is 
denoted p(x, y |  MX), and corresponds to the quantity that we have called the 
representativeness of the fits. It is important to note that x and y depend directly on the 
data set D, but only indirectly on p(D | M), through the data itself. A Bayesian approach 
yields 

∫= θθθ dMpMyxpMyxp XXX )|(),|,()|,(  

The p(x, y | MX, θ) quantity is the probability of generating a data set from model X at 
some parameters θ that yields the same fits x and y as the original data set D. Note that x 
and y are statistics of the data set D and the model set (X and Y), and do not carry as much 
information as the data itself (and is therefore called the �partial information� Bayesian 
marginal by Geweke 1999a, 1999b). Indeed the relationship between p(x, y | M) and p(D | 
M) may be non-trivial. However, given that the fits x and y are commonly used to draw 
inferences about models, it is useful to consider the likelihood of observing them given 
MX or MY. Accordingly, the representativeness of these fits is an important consideration 
when evaluating models. 
 Ideally, the representativeness could be found by solving this integral analytically. 
In general, however, the integral is intractable and must be approximated. It is worth 
noting that the commonly used Laplace approximation (de Bruijn 1958; Kass and Raftery 
1995) is inappropriate, as the posterior is not well-approximated by a multivariate 
Gaussian. With this in mind, we estimate it numerically, using the N sets of landscape 
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data, denoted L = (L1,..., LN). Formally, we estimated the representativeness of D for 
model X using the Nadaraya-Watson kernel-weighted average, 
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where K(x, y) denotes the kernel, a bivariate Gaussian distribution with mean at (x, y), 
and S(i) is an indicator function that equals 1 if the i-th data set is from MX, and 0 
otherwise. Subscripts are used to indicate which data set the fits x and y refer to. This is 
the representativeness measure reported in this paper. Since we wished to be very 
generous to the models, these distributions had covariance matrix equal to 10xI, where I 
denotes the identity matrix. The choice of 10 is somewhat arbitrary, and users wishing to 
do a precise analysis should certainly consider some formal procedure for choosing an 
optimal kernel variance. In this application, however, our interest is in setting an overly-
large kernel width, because of our �mice and tigers� approach. Accordingly, the kernel 
width of 10 is excessively large for these data. In any case, the statistical properties of the 
Nadaraya-Watson estimator can be found in Hastie et al. (2001). 


