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It consists of the following sections:

• Proportional shift is equivalent to exponential filtering.
• The six models used in part 1 of the paper
• The five models used in part 2 of the paper

Proportional shift is equivalent to exponential filtering

Footnote 4 in the paper presents an equation that indicates that a simple proportional
updating rule corresponds to an exponential filtering scheme. In this first section, we
present the derivation of this equation. This result is not new: it is widely known in the
statistics literature, but is reproduced here for convenience. The proportional update rule
asserts that a prototype previously located at µt−1, after observing a new item located at
xt is updated as follows:

µt = (1− φ)xt + φµt−1 (1)

where φ governs the extent to which the prototype is moved. Since µt−1 itself is the result of
an identical updating procredure, we can recursively substitute this updating rule, yielding
the following:

µt = (1− φ)xt + φµt−1

= (1− φ)xt + φ((1− φ)xt−1 + φµt−2)

= (1− φ)xt + (1− φ)φxt−1 + φ2µt−2

= (1− φ)xt + (1− φ)φxt−1 + (1− φ)φ2xt−2 + φ3µt−3

= (1− φ)
t∑
i=1

φt−ixi + φtµ0 (2)
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where µ0 is initial location of the prototype. If we now let τ = − ln z, this gives

µt = (1− e−τ )
t∑
i=1

e−τ(t−i)xi + e−τtµ0 (3)

This is the equation given in Footnote 4 of the paper. In this expression, the e−τ(t−i) terms
assign a weight to each observation, and these decay exponentially with the number of
elapsed trials t − i. A model that adjusts the category mean by moving it this way will
be very order sensitive, since more recent observations are deemed to be more informative
about µt than old ones.

The six models used in part 1 of the paper

In the first part of the paper, six models are fit to the data set collected by Navarro &
Perfors (2009). The description of those models was necessarily abbreviated and imprecise.
In this section we present the formal treatment of those models.

Order insensitive models

Formally, all six models can be described as simple Bayesian classifiers. Let xi denote
the stimulus co-ordinate of the ith observed item, and let `i denote the category label for
that item. Similarly, let x1:i = (x1, . . . , xi) denote the collection of stimuli observed so far,
and `i:i be defined in the same manner for the labels. Then, the classification problem on
trial t is to infer `t the label of the tth item xt, given all of the previous stimuli x1:t−1 and
their accompanying labels `1:t−1. Via Bayes’ theorem we can state that the probability that
the t-th item belongs to the k-th category is:

P (`t = k | `1:t−1,x1:t−1, xi) =
P (xt | `1:t−1,x1:t−1, `t = k) P (`t = k | `1:t−1)∑
k P (xt | `1:t−1,x1:t−1, `t = k) P (`t = k | `1:t−1)

(4)

Since the two categories are equally frequent in this experiment, we may safely assume
that P (`t = k|`1:t−1) = 1/2, and so these terms cancel out. The important quantity that
the learner must estimate is P (xt | `1:t−1,x1:t−1, `t = k), the probability that the t-th
observation would have in fact been xt if it were generated from category k.

In a standard prototype model, the k-th category is associated with a simple distribu-
tion, typically a Gaussian distribution which is characterized by a mean µk and a standard
deviation σk.

P (xt | `1:t−1,x1:t−1, `t = k) =
1√

2πσkt
exp

(
− 1

2σ2kt
(xt − µkt)2

)
(5)

Since the mean is a description of the central tendency of the category, it is generally
interpreted as corresponding to the category prototype. The estimate of the mean on trial
t is denoted µkt and is constructed by taking the mean of all category members observed
to date:

µkt =
1

nkt

∑
i<t|`i=k

xi. (6)
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where nkt =
∑
i<t|`i=k 1 counts the number of stimuli from category k that have been

observed so far. Estimating the standard deviation can be done in one of two ways. If the
categories are assumed to be of equal variance, them the same “pooled” estimator σt is used
for all categories:

σt =

√√√√ 1

t− 1

t−1∑
i=1

(xi − µ′i)
2 (7)

where µ′i equals µkt if `i = k. If categories may have unequal variances then each category
has its own variance estimate on trial t,

σkt =

√√√√ 1

nkt

∑
i<t|`i=k

(xi − µkt)2 (8)

Note that since the model estimates all means and variances from the data, there are no
free parameters that need to be estimated by fitting to human data.

In a standard exemplar model, the learner does not make any strong assumptions
about the form of the category distribution, and instead employs a “kernel density” estimate
of the distribution. This gives us the probability distribution:

P (xt | `1:t−1,x1:t−1, `t = k) =
1

λnkt

∑
i<t|`i=k

exp(−λ|xt − xi|) (9)

Since the kernel width parameter λ is not estimated by the model itself, there is one free
parameter in this model.

Introducing order sensitivity

None of these models are order-sensitive, since the underlying statistical model in all
cases assumes that data are generated independently from a single fixed category distri-
bution. A simple way to address this is to suppose that the category mean moves in an
unsystematic way from trial to trial. If so, older observations are less informative as to
the category distribution as newer ones. For instance, if the true category mean changes
according to a standard autoregressive process (specifically AR(1)), then this decay will be
exponential in character. This suggests a simple exponentially-weighted estimate:

µkt =

∑
i<t|`i=k wixi∑
i<t|`i=k wi

(10)

where wi = exp(−τ(t− i)) is an exponentially decaying function of recency, and the decay
rate τ is a parameter that must be estimated, and can be mapped onto the φ parameter
in a proportional updating rule using the result discussed at the start of the note, where
φ = exp(−τ). Since the φ parameterization is simpler, we report all results in terms of φ

No new parameters are required to construct the variance estimates, since we assume
that the variance does not change. Instead, the variance estimators differ only insofar as
they must now accommodate the variation in the mean,

σkt =

√√√√ 1

nkt

t−1∑
i=1

(xi − µki)2 (11)
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with a similar alteration applying for the equal variance case. Strictly speaking, the esti-
mators described above are slightly suboptimal, in the sense that the variance estimates
could be improved by “looking backwards” and using the benefit of hindsight to construct
a better estimate of an old mean estimate µki in light of new data. However, the simpler
version is more than sufficient for current purposes, so we avoid introducing any fancier
estimates.

In any case, by analogy we can construct a time-sensitive version of the exemplar
model, simply by weighting each exemplar by recency. The category distribution now
becomes:

P (xt | `1:t−1,x1:t−1, `t = k) =

∑
i<t|`i=k wi exp(−λ|xt − xi|)

λnkt
∑
i<t|`i=k wi

(12)

where again wi = exp(−τ(t−i)). Note that there are two separate “generalization gradient”
parameters now: λ governs the generalization across psychological space, and τ governs the
generalization across different time points.

The five models used in part 2 of the paper

Part 2 of the paper applies five models to a new experiment, and again all models
can be folded into the Bayesian classification framework discussed in the previous section.
Because the categories in the new experiment are unimodal and have equal variance, all
five models are based on the equal variance prototype model. Two of the five models have
already been discussed: they are the equal variance prototype models with and without the
exponential weighting scheme (referred to as “standard” and “recency” in the paper). The
third model, referred to as “recency + bias”, introduces a constant correction term β for
the location of the prototype. This is

µkt = β +

∑
i<t|`i=k wixi∑
i<t|`i=k wi

(13)

The fourth and fifth models both rely on a linear regression approach to adapt the
category mean. After having observed the data from the first t − 1 trials, the learner has
seen some number of stimuli that belong to the category. Each such observation can be
expressed as the pair (xi, i), where xi is the stimulus and i is the trial number on which the
i-th stimulus was observed. Note that for the k-th category, we use only the stimuli and
trial numbers for items that belong to category k. Using these data, the learner estimates
a regression model of the form:

xi = b
(kt)
1 i+ b

(kt)
0 + εi (14)

where εi is the residual associated with the i-th trial. The superscripts in b
(kt)
1 and b

(kt)
0

indicate that these are the regression coefficients the learner has estimated for the k-th
category after having observed the first t − 1 trials. The corresponding estimate for the
prototype µkt is

µkt = b
(kt)
1 t+ b

(kt)
0 (15)

The difference between models four and five lies in how the regression coefficients are calcu-

lated. In model four, the learner estimates the b
(kt)
1 and b

(kt)
0 using a standard, unweighted
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linear regression, treating each observations as equally important. Model five weights more
recent observations more heavily, using the exponential weighting scheme discussed pre-
viously. (Formally, the latter model requires us to make use of the weighted covariance
between the stimulus representation and the trial number: this is not difficult, but we omit
the details for the sake of brevity).

For all models used in this experiment the variance estimates for the category are
calculated using the equal variance version (i.e. pooled estimate) of Equation 11. The only
differences between the variance estimates lies in the fact that each model produces different
estimates for the locations of the prototype.


