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Abstract

Assessing the viability of a quantitative model given observed data is generally done in three
steps: model fitting, testing, and selection. In model fitting, we find the parameter values that
best fit observed data. This is followed by model testing in which null hypothesis significance
tests allow us to evaluate the descriptive adequacy of a model’s fit to data. Model selection
concerns the issue of choosing the model, among a set of competing models, that generalizes
best to as yet unseen data samples.

Keywords: Parameter estimation, model testing, Akaike information criterion, cross validation,
Bayesian model selection, minimum description length.

Introduction

The main reason for building models is to link theoretical ideas to observed data, and the central
question that we are interested in is “Is the model any good?” When dealing with quantitative
models, we can at least partially answer this question using statistical tools. Before going into
detail, there is a touchy, even philosophical, issue that one cannot ignore. A naive view of modeling
is to identify the underlying process (truth) that has actually generated the data. This is an ill-
posed problem, meaning that the solution is non-unique. The finite data sample rarely contains
sufficient information to lead to a single process and also, is corrupted by unavoidable random
noise, blurring the identification. An implication of noise-corrupted data is that it is not in general
possible to determine with complete certainty that what we are fitting is the regularity, which we
are interested in, or the noise, which we are not. A model that assumes a certain amount of error
is present may be worse than a yet to be postulated model which can explain more of what we
thought of as error in the first model. In short, identifying the true model based on data samples is
an unachievable goal. Furthermore, the “truth” of any phenomenon is likely to be rather different
from any proposed model. Ultimately, it is crucial to recognize that all models are wrong, and a
realistic goal of modeling is to find a model that represents a “good” approximation to the truth
in a statistically defined sense.

In what follows, we assume that we have a model M with k free parameters θ = (θ1, . . . , θk), and
a data set that consists of n observations X = (X1, . . . ,Xn). Quantitative models generally come
in two main types: They either assign some probability to the observed data f(X|θ) (probabilistic
models), or they produce a single predicted data set Xprd(θ) (deterministic models). We should
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note that most model testing and model selection methods require a probabilistic formulation, so
it is commonplace to define a model as M = {f(X|θ)| θ ∈ Ω} where Ω is the parameter space.
When written in this form, a model can be conceptualized as a family of probability distributions.

Model Fitting

At a minimum, any reasonable model needs to be able to mimic the structure of the data: It
needs to be able to “fit” the data. When measuring the goodness of a model’s fit, we find the
parameter values that allow the model to best mimic the data, denoted θ̂. The two most common
methods for this are maximum likelihood estimation (for probabilistic models) and least squares
estimation (for deterministic models). In the maximum likelihood approach, introduced by Sir
Ronald Fisher in the 1920s, θ̂ is the set of parameter values that maximizes f(X|θ), and is referred
to as the maximum likelihood estimate (MLE). The corresponding measure of fit is the maximized
log-likelihood L̂ = ln f(X|θ̂). See [3] for a tutorial on maximum likelihood estimation with example
applications in cognitive psychology.

Alternatively, the least squares estimate of θ̂ is the set of parameters that minimizes the sum
of squared errors (SSE) and the minimized SSE value is denoted by Ê:

Ê =
n∑

i=1

(Xi − Xprd
i (θ̂))2.

When this approach is employed, there are several commonly-used measures of fit. They are mean

squared error MSE = Ê/n, root mean squared deviation RMSD =
√

Ê/n, and squared correlation
(also known as proportion of variance accounted for) r2 = 1 − Ê/Var(X). In the last formula
Var(X) is the variance of the data set

∑n
i=1(Xi − X̄)2, where X̄ denotes the mean of X. There

is a nice correspondence between maximum likelihood and least squares, in that for a model with
independent, identically and normally distributed errors, the same set of parameters is obtained as
the one that maximizes the log-likelihood L but also minimizes the sum of squared errors SSE.

Model fitting yields goodness-of-fit measures, such as L̂ or Ê, that tell us how well the model
fits the observed data sample but by themselves are not particularly meaningful. If our model
has a minimized sum squared error of 0.132, should we be impressed or not? In other words, a
goodness of fit measure may be useful as a purely descriptive measure, but by itself is not amenable
to statistical inference. This is because the measure does not address the relevant question: “Does
the model provide an adequate fit to the data, in a defined sense?”. This question is answered in
model testing.

Model Testing

Classical null hypothesis testing is a standard method of judging a model’s goodness-of-fit. The
idea is to set up a null hypothesis that “the model is correct,” obtain the P-value, and then make
a decision about rejecting or retaining the hypothesis by comparing the resulting P-value with the
alpha level.

For discrete data such as frequency counts, the two most popular methods are the Pearson
chi-square (χ2) test and the log-likelihood ratio test (G2), which have test statistics given by

χ2 =
n∑

i=1

(
Xi − Xprd

i (θ̂)
)2

Xprd
i (θ̂)

; G2 = −2
n∑

i=1

Xi ln
Xprd

i (θ̂)
Xi

,
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where ln is the natural logarithm of base e. Both of these statistics have the nice property that
they are always non-negative, and are equal to zero when the observed and predicted data are in
full agreement. In other words, the larger the statistic, the greater the discrepancy. Under the
null hypothesis, both are approximately distributed as a χ2 distribution with (n − k − 1) degrees
of freedom, so we would reject the null if the obtained P -value is larger than some critical value
obtained by setting an appropriate α level.

For continuous data such as response time, goodness-of-fit tests are a little more complicated,
since there are no general-purpose methods available for testing the validity of a single model,
unlike the discrete case. Instead, we rely on the generalized likelihood ratio test that involves two
models. In this test, in addition to the theoretically motivated model, denoted by Mr (reduced
model), we create a second model, Mf (full model), such that the reduced model is obtained as a
special case of the full model by fixing one or more of Mf ’s parameters. Then, the goodness of fit
of the reduced model is assessed by the following G2 statistic:

G2 = 2
(
ln L̂f − ln L̂r

)
,

recalling that L̂ denotes the maximized log-likelihood. Under the null hypothesis that the theo-
retically motivated, reduced model is correct, the above statistic is approximately distributed as
χ2 with degrees of freedom given by the difference in the number of parameters (kf − kr). If the
hypothesis is retained (rejected), then we conclude that the reduced model Mr provides (does not
provide) an adequate description of the data (see [4] for an example application of this test).

Model Selection

What does it mean that a model provides an adequate fit of the data? One should not jump to
the conclusion that one has identified the underlying regularity. A good fit merely puts the model
on a list of candidate models worthy of further consideration. It is entirely possible that there are
several distinct models that fit the data well, all passing goodness of fit tests. How should we then
choose among such models? This is the problem of model selection.

In model selection, the goal is to select the one, among a set of candidate models, that represents
the closest approximation to the underlying process in some defined sense. Choosing the model
that best fits a particular set of observed data will not accomplish the goal. This is because a model
can achieve a superior fit to its competitors for reasons unrelated to the model’s exactness. For
instance, it is well known that a complex model with many parameters and highly nonlinear form
can often fit data better than a simple model with few parameters even if the latter generated the
data. This is called overfitting.

Avoiding overfitting is what every model selection method is set to accomplish. The essential
idea behind modern model selection methods is to recognize that, since data are inherently noisy,
an ideal model is one that captures only the underlying phenomenon, not the noise. Since noise is
idiosyncratic to a particular data set, a model that captures noise will make poor predictions about
future events. This leads to the present-day “gold standard” of model selection, generalizability.
Generalizability, or predictive accuracy, refers to a model’s ability to predict the statistics of future,
as yet unseen, data samples from the same process that generated the observed data sample.

The intuitively simplest way to measure generalizability is to estimate it directly from the data,
using cross-validation (CV; [10]). In cross-validation, we split the data set into two samples, the
calibration sample Xc and the test sample Xt. We first estimate the best-fitting parameters by
fitting the model to Xc which we denote θ̂(Xc). The generalizability estimate is obtained by
measuring the fit of the model to the test sample at those original parameters, that is, θ̂(Xc),
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CV = ln f(Xt|θ̂(Xc)).

The main attraction of CV is its ease of implementation (see [4] for its application example for
psychological models). All that is required is a model fitting procedure and a resampling scheme.
One concern with CV is that there is a possibility that the test sample is not truly independent of
the calibration sample: Since both were produced in the same experiment, systematic sources of
error variation are likely to induce correlated noise across the two samples, artificially inflating the
CV measure.

An alternative approach is to use theoretical measures of generalizability based on a single
sample. In most of these theoretical approaches, generalizability is measured by suitably combining
goodness-of-fit with model complexity. The practical difference between them is the way in which
complexity is measured. One of the earliest measures of this kind was the Akaike information
criterion (AIC; [1]), which treats complexity as the number of parameters k:

AIC = − ln f(X|θ̂) + k,

The method prescribes that the model minimizing AIC should be chosen. AIC seeks to find
the model that lies “closest” to the true distribution, as measured by the Kullback-Leibler [8]
discrepancy. As shown in the above criterion equation, this is achieved by trading the first, minus
goodness-of-fit (lack of fit) term of the right hand side for the second complexity term. As such,
a complex model with many parameters, having a large value of the complexity term, will not be
selected unless its fit justifies the extra complexity. In this sense, AIC represents a formalization of
the principle of Occam’s razor, which states “Entities should not be multiplied beyond necessity”
(William of Occam, ca. 1290 - 1349).

Another approach is given by the much older notion of Bayesian statistics. In the Bayesian
approach, we assume that a priori uncertainty about the value of model parameters is represented
by a prior distribution π(θ). Upon observing the data X, this prior is updated, yielding a posterior
distribution π(θ|X) ∝ f(X|θ)π(θ). In order to make inferences about the model (rather than its
parameters), we integrate across the posterior distribution. Under the assumption that all models
are a priori equally likely (because the Bayesian approach requires model priors as well as parameter
priors), Bayesian model selection chooses the model M with highest marginal likelihood defined
as:

f(X|M) =
∫

f(X|θ)π(θ) dθ.

The ratio of two marginal likelihoods is called a Bayes factor (BF; [2]), which is a widely used
method of model selection in Bayesian inference. The two integrals in the Bayes factor are non-
trivial to compute unless f(X|θ) and π(θ) form a conjugated family. Monte Carlo methods are
usually required to compute BF, especially for highly parameterized models. A large sample ap-
proximation of BF yields the easily-computable Bayesian information criterion (BIC; [9])

BIC = − ln f(X|θ̂) + k

2
lnn.

The model minimizing BIC should be chosen. It is important to recognize that the BIC is based
on a number of restrictive assumptions. If these assumptions are met, then the difference between
two BIC values approaches twice the logarithm of the Bayes factor as n approaches infinity.
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A third approach is minimum description length (MDL; [5]), which originates in algorithmic
coding theory. In MDL, a model is viewed as a code that can be used to compress the data. That
is, data sets that have some regular structure can be compressed substantially if we know what
that structure is. Since a model is essentially a hypothesis about the nature of the regularities
that we expect to find in data, a good model should allow us to compress the data set effectively.
From an MDL standpoint, we choose the model that permits the greatest compression of data in
its total description: That is, the description of data obtainable with the help of the model plus the
description of the model itself. A series of papers by Rissanen expanded on and refined this idea,
yielding a number of different model selection criteria (one of which was identical to the BIC). The
most complete MDL criterion currently available is the stochastic complexity (SC; [7]) of the data
relative to the model,

SC = − ln f(X|θ̂) + ln
∫

f(Y |θ̂(Y )) dY .

Note that the second term of SC represents a measure of model complexity. Since the integral over
the sample space is generally non-trivial to compute, it is common to use the Fisher-information
approximation (FIA; [6]): Under regularity conditions, the stochastic complexity asymptotically
approaches

FIA = − ln f(X|θ̂) + k

2
ln

(
n

2π

)
+ ln

∫
Θ

√
det I(θ) dθ,

where I(θ) is the expected Fisher information matrix of sample size one, consisting of the covari-
ances between the partial derivatives of L with respect to the parameters. Once again, the integral
can still be intractable, but it is generally easier to calculate than the exact SC. As in AIC and
BIC, the first term of FIA is the lack of fit term and the second and third terms together represent
a complexity measure. From the viewpoint of FIA, complexity is determined by the number of free
parameters (k) and sample size (n) but also by the “functional form” of the model equation, as
implied by the Fisher information I(θ), and the range of the parameter space Θ.

When using generalizability measures, it is important to recognize that AIC, BIC and FIA are
all asymptotic criteria, and are only guaranteed to work as n becomes arbitrarily large, and when
certain regularity conditions are met. The AIC and BIC in particular can be misleading for small
n. The FIA is safer (i.e., the error level generally falls faster as n increases), but it too can still be
misleading in some cases. The SC and BF criteria are more sensitive, since they are exact rather
than asymptotic criteria, and can be quite powerful even when presented with very similar models
or small samples. However, they can be difficult to employ, and often need to be approximated
numerically. The status of CV is a little more complicated, since it is not always clear what CV is
doing, but its performance in practice is often better than AIC or BIC, though it is not usually as
good as SC, FIA, or BF.

Conclusion

When evaluating a model, there are a number of factors to consider. Broadly speaking, statistical
methods can be used to measure the descriptive adequacy of a model (by fitting it to data and testing
those fits), as well as its generalizability and simplicity (using model selection tools). However, the
strength of the underlying theory also depends on its interpretability, its consistency with other
findings, and its overall plausibility. These things are inherently subjective judgements, but they
are no less important for that. As always, there is no substitute for thoughtful evaluations and
good judgement. After all, statistical evaluations are only one part of a good analysis.
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