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Abstract—We apply a Minimum Description Length—based The partitioning problem can be decomposed into two
clustering technique to the problem of partitioning a set of elements: searching for partitions and choosing between them.
learning curves. The goal is to partition experimental data | this paper we concentrate on the latter, while applying
collected from different sources into groups of sources that are .
statistically the same. We solve this problem by defining statistical Standard methods [6] for the former. Broadly speaking, there
models for the data generating processes, then partitioning them are two approaches to choosing between clustering solutions.
using the Normalized Maximum Likelihood criterion. Unlike In “distance-based” clustering, one defines a proximity mea-
many alternative model selection methods, this approach is sure between items, and then seeks to minimize within-group
optimal (in @ minimax coding sense) for data of any sample gistances and/or maximize between-group distances [4]. In
size. We present an application of the method to the cognitive w " -
modeling problem of partitioning of human learning curves for Con.tra_St’ the mOdeI'bas_ed approa(;h t,reats a partition as a
different categorization tasks. statistical model that assigns some likelihood to the observed
data. From this vantage point, we can choose a partition using
information theoretic techniques such as Minimum Descrip-

Clustering is one of the most basic and useful methods tién Length (MDL; [5],[21],[23]). An innovative approach for
data analysis. It involves treating groups of objects as if thelping this is developed in [11]. In this paper we apply this
were the same, and describing how the groups relate to deehnique to the problem of partitioning learning curves, and
another. Clustering summarizes and organizes data, provideiszuss the statistical question of model complexity in data
framework for understanding and interpreting the relationshigtustering.
between objects, and proposes a simple description of these
relationships that has the potential to generalize to new or dif-
ferent situations. For these reasons, many different clusteringrhe MDL principle states that the goal in statistical mod-
models have been developed and used in fields ranging fréng is to use the regularities present in a data set to
computer science and statistics to marketing and psycholog§gmpress it the greatest possible extent, describing the data in
In the current paper, we consider a specific applied clusteriiff most economical manner possible [5]. From a clustering
problem from an information theoretic perspective. perspective, we choose the clustering solution that allows the

Imagine an experiment in which we collect data frongreatest possible compression of the data. In what follows, we
T different sources, but we suspect that these sources Rfiopt @ model-based clustering procedure closely related to
natura”y intoK < T groups. To Verify this Suspicion, we the one used in [11], which seeks to maximize the Normalized

need a tool to partition the data in a principled way. Sinddaximum Likelihood criterion (NML; [23]),

I. INTRODUCTION

I[1. MINIMUM DESCRIPTIONLENGTH CLUSTERING

each of theT" sources is a sample of data, we refer to this X |6

. LSS . e __ p(X|0x)
as a “sample partitioning” problem. As with any partitioning, NML(X) = —————.
the goal is to extract a set of equivalence relations (which > x p(X[6x)

form a class or cluste), while remaining agnostic aboutwherep(-|9) is the model class associated with a partition,
the relationships between the classes. The sample-partitioniitgl we denote the denominator By In this expressiond x
problem arises in a number of applied situations. Throughaigtthe maximum likelihood estimate (MLE) for data Saf,
this paper, we use a common problem in cognitive modelinghd the sum is taken over all possible data sets. The log of
as a concrete example. The cognitive modeling problem arishe denominator term is theegret for the model. The NML
when comparing the way people’s performance improves owugiterion is optimal in the sense that the stochastic complexity
the course of many learning experiments. The nature of tbethe data SG= — In(NML ) gives the length of an idealized
different experimental tasks can lead to similar performance prefix code that minimizes the expected codelength for data
very different learning performance. The inference problem égenerated by the “worst possible” source [23],
determining which tasks give rise to curves that are essentially .
the same and which give rise to curves that are inherently ¢* = minmax B, %] ,

q

h In
different. ¢ g




Thus, from a coding perspective the Shannon-Fano code cofiate the yf™ values are sufficient statistics for the data,
sponding to the NML distributiory* represents the minimax assuming that the model &'

optimal method of encoding the data with the help of the Besides the stipulation that observations come partially pre-
model claso(- | 8). By choosing the partition that maximizesclustered in samples, the main difference between this model
NML, we find the most economical expression of the structuass and that in [11] is they employ a finite mixture model,

in the data, which is precisely our goal in clustering. in which the assignment of items to clusters is assumed to
be the result of a latent probabilistic process. Motivated by
A. Fixed Partitions as Model Classes the learning curves problem, we assume that a cluster is a

é“i?&ed grouping of samples. Since the category structures that
eIAcit the samples are derived from the fixed representational
structure of the stimuli [25], it makes little sense in this context
ﬁgapropose a model class in which object assignments are
med to result from a probabilistic process.

Under a model-based clustering procedure, the data
assumed to be the outcome of some random process.
clustering solution is thus treated asreodelfor the data, and
the adequacy of that solution can be assessed using statis
model selection tools. In this section we outline a clusterin%Ssu
model for discrete data that is appropriate to the appliggl Calculating NML

problem of partitioning learning curves. We briefly discuss how the NML computations are per-

Suppose that we have_ a discre.te da’Fa set made uﬁ Offormed, and check that the results in [11] generalize to the
samples, each of which is al-variate discrete probability o\ rent model. For this clustering model, the MLE is given
over H response options. For instance, we might hdve by

participants who solvel/ different kinds of problems, and . yhm
each problem hag/ possible answers. Note that since each oy = #
class of problem may have a different number of potenti

responsesH should technically be denotedf,,. However,
this subscript will be dropped, since it will be clear from

I .
%ubstituting the MLE values into the likelihood function gives
he maximized likelihood,

context. A particular partitioning of thes& samples might . M K HhH_l(ny'rn)yi‘,m
be expressed in the following way. If we assume that there p(X16) = H H W .
are K clusters, we might letD;, indicate how many of the m=1 k=1

original samples fall into théth cluster. SaD,, represents the The normalizing term for a clustering mod€! is given by,
size of the cluster, and thds, Dy = T'. As before, we will

generally drop the subscrifgt when discussingD. Z2c = Z e Z

We represent the dataX in terms of the statistics uit ey =wtt oy ey M= KM
zi.. xﬁ}‘f wherez%™ counts the number of observations MoK km) Mo KT (ke
that fall into thehth response category on theth dimension H H TH  omy H W 5
for the dth sample that belongs to thkth cluster. In the m=1k=1 Llh=1Yn""1 lm=1k=1

example given earlier*™ would denote the number of timeswhere the first square-bracketed term counts the number of

that participant! of clusterk gave the respondeto a problem data sets that have the sufficient statisgi£s. . .y, and the

of type m. It will be convenient to defing’™ andw*™ as, second square-bracketed term gives the maximized likelihood
to any such data set. After rearranging:

D H

km km km km

Yn :Exdhaw :Eyh' Zc = g E
d=1 h=1

yil—&-...—ﬁ-y}}:w“ yf(M-Q—...—&-ngszM
In the exa}mple discusseg}™ is the number of times that MoK km) (yfb'rn)yii”

someone in théth cluster gave the answérto a problem in H H (whm)wr™ H yrm

m, while wy.,, is the total number of times that a problem of m=1k=1 h=1  “h

type m was presented to group Notice that any particular inner term depends on only a single

A partitioning model forX consists of the set ok clusters value ofm andk. Thus terms wheren = 1 andk = 1 may
C = (c;...ck). In this expressiong, denotes the set of be moved forward. Now, notice that all of the nested terms
(indices of) samples that belong to tkeh cluster. The model do not depend on the values gf' ...y}, so they can be
parameter® = (1%, ...0MK) correspond to the probabilitiesremoved as a factor. Repeating this for alland & allows
with which each of the responses are chosen. Accordingic to be factorized, yielding
gk gives_ the. plro?)atl)ility_with WhliCh ;spogsl;is pre.dicted v K
to occur in trials belonging to clustée and dimensionm. z.
Thus the likelihoodp(X | 8) is, © IT11 2
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Since individual clusters and dimensions are assumed to be
independent, it is not surprising to sé&e: factorize. The inner
term corresponds to the normalization ted{H,w) for a
one-dimensional multinomial withH options and a sample
size ofw. Thatis,Z¢c = [],, [1, Z(Hm,w™*). The problem

of calculating NML for multinomial data is addressed in [11],
so it suffices simply to restate their result:

= % (G5) (45)

r1+re =w

Z(J1,m1) Z(J2,72),
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Fig. 1. The six possible category learning tasks for eight stimuli (the spheres)

. efined in terms of three binary-valued features (arranged as a cube). Each
where J, and J, are any two integers betvyeen 1 an(l‘tijask divides the stimuli into four dark colored and four light colored stimuli.
H — 1 such thatJ; + J, = H. They use this result to

calculate Z(H,w) efficiently using a recursive algorithm.

In essence, we start by calculating all the binomial terms 05
Z(2,1),...,Z(2,w). This is reasonably fast since there are
comparatively few ways of dividing a sample across two
possible outcomes. Once these are known, they can be used
to construct the normalizing constants for larger multinomials.
For example, if we needeH = 14, we would set/; = 2 and

Jo = 2 to find the normalizing term foirH = 4. We could

then setJ; =4, andJ; = 4 to getH = 8. ThenJ; = 8 and

Jo =4 givesH = 12, and finally J; = 12 and J; = 2 would

give the required quantities faif = 14. Obviously, at each
step we need to calculate the sum overand ro, but this 0.1
can be done quickly by constructing tables®fvalues. Once

we have the normalizing terms for the various multinomials, o
we merely need to take the appropriate product to get the 0
corresponding term for the clustering model.
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I1l. PARTITIONING LEARNING CURVES Fig. 2. Empirical learning curves for the Shepard, Hovland and Jenkins task.

The applied problem comes from Shepard et al. [25], in
which human performance was examined on a category learn-
ing task involving eight stimuli divided evenly between twd3]: [17], [25], the extraction of the partition from data has only
categories. The stimuli were generated by varying exhaustivéigen done subjectively, by visual inspection of the curves in
three binary dimensions such as (black, white), (small, largElgure 2. The empirical partition is then used as a set of strong
and (square, triangle). If the dimensions are interchangealf&dinal constraints on potential models. That is, any cognitive
there are only six fundamental category structures, illustrat¥del of people’s learning must show the same clustering
in Figure 1. Empirically, there are robust differences in the weff learing task performance (e.g., [3],[12],[17],[25]). Given
in which each of the six fundamental category structures §8is important role in understanding human category learning,
learned. In particular, Type 1 is learned more easily than Tyfewould clearly be preferable to extract the partition using
2, which in turn is learned more easily than Types 3, 4 and Bfincipled statistical methods. This becomes especially impor-
Type 6 is the most difficult to learn. More recently, Nosofskjant for data sets that do not lend themselves to simple visual
et al. [17] replicated the experiment and reported the detailétfPlays.
learning curves shown in Figure 2. Nevertheless the ordinalor clusters containing 1, 2, ..., 6 curves, the regrets are ap-
constraintl < 2 < (3,4,5) < 6 is the most theoretically proximately 57.3, 62.3, 65.3, 67.4, 69.1 and 70.5 respectively.
important result from the experiment. We then applied an average-link clustering procedure to find

six candidate partitions, with{ = 1,2,...,6. The results,

A. Clustering Models for the Shepard Curves shown in Table I, agree with the intuition that the correct

The data have the following properties: each “data pointlustering should be (1)(2)(3,4,5)(6). However, it suggests that
is a pooled set ofh = 40 x 16 = 640 binary observations (1)(2)(3,5)(4)(6), with an MDL value differing by 10, is the
(implying H = 2), assumed to be the outcome of independentosest competitor, though since this is on a logarithmic scale it
Bernoulli trials. Each “curve” consists dff = 16 data points, implies that the normalized likelihood assigned to the data by
corresponding to 16 different measurement intervals. Thettes model is actually'® ~ 22, 000 times lower. Inspection of
are T = 6 such curves, and the task is to find a set dfigure 2 agrees with this, since the curve for Type 4 is a little
equivalence relations among tliecurves. In previous analysesdifferent from those for Types 3 and 5, but the discrepancy is



TABLE | 1050

SIX CANDIDATE CLUSTERING SOLUTIONS FOR THESHEPARD TASK. 1000} +
950
Partition (Mis)Fit  Complexity = MDL
(1, 2,3,4,56) 16,337 70 16,408 s !
(1,2 3 4,5(06) 15399 126 15,525 2 g0l !
(1, 2)(3, 4,5)(6) 14,772 185 14,957 R
()3, 4, 5)(6) 14,597 237 14,834 H 1
(1)(2)(3, 5)(4)(6) 14,553 291 14,844 Pl )
(1)Q)(B)@(B)6) 14518 343 14,861 © ol
650 : . ! '
o -..“!llllll|||||nn ..........
not of the same order as.those corresponding to Types 1, 2 B0 e
and 6. In short, the clustering procedure behaves appropriately Number of Clusters

for thi . ' . . )
or this data set Fig. 3. Model complexity per clustgfl /K) In Z is not constant, either as

B. Human Category Learning and Stimulus Coding the number of clusters changes or within a fixed model order.

Theoretical work on human classification stresses the impor-
tance of data compression. It is assumed that humans make
classification decisions not only to make predictions about the
world, but to efficiently code the information in the environ- Accounting for model complexity is an important topic in
ment (see [10] for an overview). In the last section we demogtatistics [7]. Unfortunately, while model complexity is well-
strated that there is strong empirical evidence that the Shepardierstood in the theoretical literature, few applications take
curves should indeed be partitioned as (1)(2)(3,4,5)(6). In [&kcount of this modern theory. One reason for this shortcoming
the corresponding weak ordek2<(3,4,5x6 was shown to may be the fact that many introductory articles (e.g., [19])
reflect the amount of information carried by each categohave discussed only asymptotic criteria (e.g., AIC [1], BIC
structure, so it appears that the rate at which humans acqu4], asymptotic MDL [22]), which sometimes yield very odd
a category is well-predicted by the informational content aksults for small samples (e.g., [16],[13]). In contrast, the
the category. Given the obvious theoretical importance of th#ML criterion is exact, and optimal (in the minimax coding
regularity, an interesting test of the validity of category learrsense discussed earlier) for data of any sample size. Moreover,
ing models is the extent to which they preserve this regularity supplies a natural complexity measure (i.en,Z). Taken
across their parameter spaces. If different parameterizatidgogether, these two properties allow us to measure complexity
of a model are intended to correspond to different kinds gfroperly and discuss it accurately.
plausible human performance, then they should not violateSince model complexity has been a focus of some research
this ordering too severely. in the clustering context, and since the use of asymptotic mea-

We tested this proposition with regard to the classic ALsures is very typical of this research (e.g., [14],[15]), it is worth
COVE model [12], which learns by backpropagating thériefly revisiting model complexity for clustering models using
prediction error made by an adaptive kernel density estimatthie exact NML measure. Figure 3 plots NML complexity per
In order to search ALCOVE's parameter space, we used tblester (1/K)In Z& against the number of cluste® for
Markov chain Monte Carlo algorithm proposed in [9] to findevery possible partition of’ = 40 samples, withH = 20
the different partial orders predicted by the model (see [28&sponse optionsy = 100 observations per cell, and = 16
for details). In total, there are only eleven stable orderings thditnensions. If complexity is well-captured by the number of
occupy a substantial proportion of the parameter space, ongpafameters — as is implicitly assumed when one advocates
which is the empirically observed order. From this, it is cleahe use of measures like AIR6] — (1/K)In Z¢ should be
that Types 3 and 4 are always (11 of 11) predicted to be learneshstant. Unsurprisingly Figure 3 shows that complexity per
at about the same rate, and Type 5 is usually (9 of 11) alstuster is not constant a increases, nor is it constant across
about the same. Type 6, on the other hand, is mostly learmaddels with the same number of clusters.
slower than 3, 4 and 5 (8 of 11). Types 1 and 2 are usually The reason for this pattern becomes clearer when we
(8 of 11) slower than 3-5. So, not only is the empiricallyeonsider the relationship between the size of a cluster (i.e., the
observed ordering among the most common predictions, buwimber of samples assigned to it) and its complexity. Figure 4
the other high-frequency predictions generally preserve masots this relationship for clusters of the same data sets referred
of the pairwise relations implied by the empirical data. Th® in Figure 3 (i.e.,7 = 40, H = 20, N = 100 and
exception to this claim regards the relationship between Typ&$ = 15). The dotted line is the predicted curve if complexity
1 and 2. In this regard, the model predictions are ambiguowgere a constant function of model order, and the dashed line
It might be thatl < 2 (4 of 11), or1 = 2 (4 of 11), or shows the prediction if complexity were a constant function
even2 < 1 (3 of 11). In this case, ALCOVE does not make af cluster size (in fact, if the dashed line were accurate,
strong prediction about the relationship between informationdden each observation would contribute equally to complexity
content and category learning. irrespective of how they were partitioned, and all clustering

IV. EXACT MEASURES OFMODEL COMPLEXITY
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