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Abstract

This paper develops a new representational model of similarity data
that combines continuous dimensions with discrete features. An al-
gorithm capable of learning these representations is described, and
a Bayesian model selection approach for choosing the appropriate
number of dimensions and features is developed. The approach is
demonstrated on a classic data set that considers the similarities
between the numbers 0 through 9.

1 Introduction

A central problem for cognitive science is to understand the way people mentally
represent stimuli. One widely used approach for deriving representations from data
is to base them on measures of stimulus similarity (see Shepard 1974). Similarity
is naturally understood as a measure of the degree to which the consequences of
one stimulus generalize to another, and may be measured using a number of experi-
mental methodologies, including ratings scales, confusion probabilities, or grouping
or sorting tasks. For a domain with n stimuli, similarity data take the form of an
n£ n matrix, S = [sij ], where sij is the similarity of the ith and jth stimuli. The
goal of similarity-based representation is then to Þnd structured and interpretable
descriptions of the stimuli that capture the pattern of similarities.

Modeling the similarities between stimuli requires making assumptions about both
the representational structures used to describe stimuli, and the processes used to
assess the similarities across these structures. The two best developed represen-
tational approaches in cognitive modeling are the �dimensional� and �featural� ap-
proaches (Goldstone, 1999). In the dimensional approach, stimuli are represented by
continuous values along a number of dimensions, so that each stimulus corresponds
to a point in a multi-dimensional space, and the similarity between two stimuli is
measured according to the distance between their representative points. In the fea-
tural approach, stimuli are represented in terms of the presence or absence of a set
of discrete (usually binary) features or properties, and the similarity between two
stimuli is measured according to their common and distinctive features.

The dimensional and featural approaches have different strengths and weaknesses.
Dimensional representations are constrained by the metric axioms, such as the tri-



angle inequality, that are violated by some empirical data. Featural representations
are inefficient when representing inherently continuous aspects of the variation be-
tween stimuli. It has been argued that spatial representations are most appropriate
for low-level perceptual stimuli, whereas featural representations are better suited to
high-level conceptual domains (e.g., Carroll 1976, Tenenbaum 1996, Tversky 1977).
In general, though, stimuli convey both perceptual and conceptual information. As
Carroll (1976) concludes: �Since what is going on inside the head is likely to be
complex, and is equally likely to have both discrete and continuous aspects, I believe
the models we pursue must also be complex, and have both discrete and continuous
components� (p. 462).

This paper develops a new model of similarity that combines dimensions with fea-
tures in the obvious way, allowing a stimulus to take continuous values on a number
of dimensions, as well as potentially having a number of discrete features. We de-
scribe an algorithm capable of learning these representations from similarity data,
and develop a Bayesian model selection approach for choosing the appropriate num-
ber of dimensions and features. Finally, we demonstrate the approach on a classic
data set that considers the similarities between the numbers 0 through 9.

2 Dimensional, Featural and Combined Representations

2.1 Dimensional Representation

In a dimensional representation, the ith stimulus is represented by a point pi =
(pi1, . . . , piv) in a v-dimensional coordinate space. The dissimilarity between the
ith and jth stimuli is then usually modeled as the distance between their points
according to one of the family of Minkowskian metrics

�dij =

Ã
vX
k=1

jpik ¡ pjkjr
! 1

r

+ c, (1)

where c is a non-negative constant. Dimensional representations can be learned us-
ing a variety of multidimensional scaling algorithms (e.g., Cox & Cox, 1994), which
have placed particular emphasis on the r = 1 (City-Block) and r = 2 (Euclidean)
cases because of their relationship, respectively, to so-called �separable� and �inte-
gral� stimulus dimensions (Garner 1974). Pairs of separable dimensions are those,
like shape and size, that can be attended to separately. Integral dimensions, in
contrast, are those rarer cases like hue and saturation that are not easily separated.

2.2 Featural Representation

In a featural representation, the ith stimulus is represented by a vector of m bi-
nary variables fi = (fi1, . . . , fim), where fik = 1 if the ith stimulus possesses the
kth feature, and fik = 0 if it does not. Each feature is also usually associated
with a positive weight, wk, denoting its importance or salience. No constraints are
placed on the way features may be assigned to stimuli. Rather than requiring fea-
tures partition stimuli, as in many clustering methods, or that features nest within
one another, as in many tree-Þtting methods, the ßexible nature of human mental
representation demands that features are allowed to overlap in arbitrary ways.

Although a number of models have been proposed for measuring the similarity
between featurally represented stimuli (Navarro & Lee, 2002), the most widely used
is the Contrast Model (Tversky, 1977). The Contrast Model assumes the similarity



between two stimuli increases according to the weights of the (common) features
they share, decreases according to the weights of the (distinctive) features that one
has but the other does not, and these common and distinctive sources of information
are themselves weighted in arriving at a Þnal similarity value. Particular emphasis
(e.g., Shepard & Arabie, 1979; Tenenbaum, 1996) has been given to the special case
of the Contrast Model where only common features are used, and feature weights
are additive, so that the similarity of the ith and jth stimuli is given by

�sij =

mX
k=1

wkfikfjk + c. (2)

Although learning common feature representations is a difficult combinatorial op-
timization problem, several successful additive clustering algorithms have been de-
veloped (e.g., Lee, 2002; Ruml, 2001; Tenenbaum, 1996).

2.3 Combined Representation

The obvious generalization of dimensional and featural approaches is to represent
stimuli in terms of continuous values along a set of dimensions and the presence or
absence of a number of discrete features. If there are v dimensions and m features,
the ith stimulus is deÞned by a point pi, a feature vector fi, and the feature weights
w = (w1, . . . , wm).

With this representational structure in place, we assume the similarity between
the ith and jth stimuli is then simply the sum of the similarity arising from their
common features (Eq. 2), minus the dissimilarity arising from their dimensional
differences (Eq. 1), as follows

�sij =

Ã
mX
k=1

wkfikfjk

!
¡
Ã

vX
k=1

jpik ¡ pjkjr
! 1

r

+ c.

3 Model Fitting and Selection

Proposing the combined representational approach immediately presents two chal-
lenges. The Þrst model Þtting problem is to develop a method for learning rep-
resentations that Þt the similarity data well using a given number of dimensions
and features. The second model selection problem is to choose between alternative
combined representations of the same data that use different numbers of features
and dimensions.

Formally, we conceive of the representational model as specifying the number of
dimensions and features and the nature of the distance metric, and being para-
meterized by the feature variables and weights, coordinate locations and the ad-
ditive constant. This means a particular representation is given by Rα (θ) where
α = (v,m, r) and θ = (p1, . . . ,pn, f1, . . . , fn,w, c).

Following Tenenbaum (1996), we assume that the observed similarities come from
independent Gaussian distributions with means sij and common variance σ. The
variance corresponds to the precision of the data which, for empirical similarity
data averaged across information sources (such as individual participants) is easily
estimated (Lee 2001), and otherwise must be speciÞed by assumption.

Under these assumptions, the likelihood of a similarity matrix given a particular



representation is

p (S j Rα, θ) =
Y
i<j
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giving the log-likelihood function
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Within this framework, we solve the model Þtting problem by Þnding the maximum
likelihood parameter values θ∗. Measures of data Þt like maximum likelihood, how-
ever, are clearly not appropriate for choosing between representations with different
numbers of dimensions and features, because of differences in model complexity. For
this reason, we tackle the model selection problem using a Bayesian approach.

3.1 Fitting Algorithm

Our learning algorithm for the combined model relies on the observation (Tenen-
baum, 1996) that it is relatively easy to Þnd the maximum likelihood values of
the continuous parameters�the coordinate locations, feature weights, and additive
constant�given values for the discrete feature assignments.

If θ is partitioned into θC = (p1, . . . ,pn,w, c) and a Þxed θD = (f1, . . . , fn), then
we solve the optimization problem

argmax
θC

ln p (S j Rα, θD, θC) where w, c ¸ 0, (3)

using the Levenberg-Marquardt approach (More, 1977). Since distances are pre-
served under translation for the Minkowskian family of metrics, we assume without
loss of generality that p1 is the origin.

With this optimization capability in place, our learning algorithm may be described
by the following Þve stage process:

Step 1: Choose a maximum number of dimensions vmax and features mmax. Start
with v = 1 and m = 1, making the lone feature the current feature to be optimized.

Step 2: Find a starting (seed) value for the current feature by considering all possi-
bilities that have exactly one pair of stimuli with the feature, choosing the possibility
with the best data-Þt using Eq. 3.

Step 3: Consider all possible representations arising from changing the assignment
of one stimulus in relation to the current feature. If any of these changes improve
the Þt of the representation as a whole, update the representation to be the one
with the best Þt. Repeat this process until no change is found that improves the
representation. The current representation at this point is recorded as the best-
Þtting representation with v dimensions and m features.

Step 4: If there are fewer than mmax features, then add a new feature, make it the
current feature, and return to Step 2.



Step 5: If there are fewer than vmax dimensions, then add a new dimension, reset
the number of features to m = 1, and again make the lone feature the current
feature to be optimized. Return to Step 2.

The output of this algorithm is a grid of vmax£mmax representations, one for each
possible combination of number of dimensions and number of features.

3.2 Model Selection

Given representational models with different numbers of dimensions and features,
the Bayesian approach is to select the one with the maximum posterior probability

p (Rα j S) = p (Rα)

p (S)

Z
p (S j Rα, θ) p (θ j Rα) dθ.

Since all models relate to the same similarity data, p (S) is a constant. If we assume
that all representations are a priori equally likely, the posterior becomes

p (Rα j S) /
X
θD

Z
p (S j Rα, θ) p (θ j Rα) dθC . (4)

This Bayesian approach embodies an automatic form of Ockham�s Razor, balanc-
ing data-Þt against model complexity, because it considers the model at all of its
parameterizations. Complicated models that use many parameters (i.e., have high
parametric complexity), or parameters that interact in complicated ways (i.e., have
high functional form complexity) to achieve good levels of data-Þt at their optimal
values will typically Þt data poorly at other parameter values, and so will have
smaller posteriors.

For the combined model, the posterior in Eq. 4 is not well approximated by simple
measures such as the Bayesian Information (BIC: Schwarz, 1978) that have pre-
viously been applied to dimensional and featural representations (Lee & Navarro,
2002). This is because the BIC measures only parametric complexity, and treats
each additional parameter as having an equal effect on model complexity. Binary
feature membership parameters and continuous coordinate location parameters,
however, will clearly have different effects on model complexity. In addition, be-
cause the BIC does not measure functional form complexity, it is not sensitive to the
change in representational model complexity arising from different distance metrics.
There are also difficulties approximating the posterior by a multivariate Gaussian
with θ∗ as the mode, as in the Laplacian approximation (see Kass & Raftery, 1995,
p. 778), because the featural component of the combined model makes the posterior
multimodal.

For these reasons, we employed Monte Carlo methods with importance sampling
(e.g., Oh & Berger, 1993), in which the posterior is numerically approximated by

p (Rα j S) ¼ 1

N

NX
i=1

p (S j Rα, θi) p(θi j Rα)

g(θi j Rα)
,

where each of the N θi values is independently sampled from g(¢). In the following
evaluation, we assumed that p(θ j Rα) is uniform over θ, and speciÞed an importance
distribution g(¢) that was Gaussian over θC and multinomial over θD. As the
posterior may be multimodal and non-standard, g(¢) was heavy tailed, and we
sampled extensively (N = 5£ 106) to ensure convergence.
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Figure 1: Representations of the numbers similarity data using the (a) dimensional
and (b) featural approaches.

4 An Illustrative Example

Shepard, Kilpatric and Cunningham (1975) collected data measuring the �abstract
conceptual similarity� of the numbers 0 through 9. Figure 1(a) displays a two-
dimensional representation of the numbers, using the City-Block metric. This rep-
resentation explains only 78.6% of the variance, and fails to capture important
regularities evident in the raw data, such the fact that the number 7 is more similar
to 8 than it is to 9, or that 3 is much more similar to 0 than it is to 8, and so on.
Figure 1(b) shows an eight-feature representation of the numbers using the same
data, as reported by Tenenbaum (1996). This representation explains 90.9% of
the variance, with features corresponding to arithmetic concepts (e.g., f2, 4, 8g and
f3, 6, 9g) and to numerical magnitude (e.g., f1, 2, 3, 4g and f6, 7, 8, 9g). We note in
passing that the representations displayed in Figure 1 are also recovered when our
algorithm is restricted to purely dimensional or purely featural representations.

Figure 1 suggests that the numbers data is a candidate for combined representation.
Features are appropriate for representing the arithmetic concepts, but a �magnitude�
dimension seems to offer a more efficient and meaningful representation of this
regularity than the Þve features used in Figure 1(b).

We Þtted combined models with between one and three dimensions and one and
eight features to the same similarity data, and calculated the log posterior for each.
Because the raw data needed to estimate the precision of these averaged data are
unavailable, we followed the arguments presented in Lee (2002) to make a conserva-
tive choice of σ = 0.15. The results are shown in Figure 2. All of the representations
using one dimension are more likely than those using two or three dimensions. Of
the one dimensional representations, the four feature version is preferred, although
the likelihoods of representations with other numbers of features are close enough
to warrant consideration in choosing a �best� representation, particularly given the
assumptions made about data precision.

For the sake of concreteness, however, Figure 3 describes the representation with one
dimension and four features, which explains 90.0% of the variance. The one dimen-
sion almost orders the numbers according to their magnitude, with the violations
being very small. The four features all capture meaningful arithmetic concepts, cor-
responding to �powers of two�, �multiples of three�, �multiples of two� (or �even
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Figure 2: Log posteriors for combined representations with between one and three
dimensions, and one and eight features.

1 2 3 4 5 6 7 8 90 Feature Weight
2 4 8 0.286

3 6 9 0.282

2 4 6 8 0.224

1 3 9 0.157

additive constant 0.568

Figure 3: Representation of the numbers similarity data using one dimension (shown
on the left) and four features (shown on the right).

numbers�) and �powers of three�. Encouragingly, these features are close to those
in Figure 1(b) that do not deal with numerical magnitude.

5 Conclusion

Future work will examine the use of other featural similarity models besides the
purely common features approach, and will also look to develop learning algo-
rithms that do not rely on maximum likelihood estimation, but instead consider
the posterior probability of a representation. Reliable analytic approximations to
the posterior will be required for this purpose.

Most importantly, however, the combined representation of a wide range of simi-
larity data needs to be examined. Although the numbers data is a promising start,
it is just a Þrst test of the combined approach to similarity-based representation.
Demonstrating the generality and usefulness of the ability to represent stimuli in
terms of both dimensions and features remains a challenge for future research.
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