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Abstract

We propose a new method for quickly calculating the probability density function for first pas-

sage times in simple Wiener diffusion models, extending an earlier method used by Van Zandt,

Colonius and Proctor (2000). The method relies on the observation that there are two distinct

infinite series expansions of this probability density, one of which converges quickly for small

time values, while the other converges quickly at large time values. By deriving error bounds

associated with finite truncation of either expansion, we are able to determine analytically which

of the two versions should be applied in any particular context. The bounds indicate that, even

for extremely stringent error tolerances, no more than 8 terms are required to calculate the

probability density. By making the calculation of this distribution tractable, the goal is to allow

more complex extensions of Wiener diffusion models to be developed.
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1 Introduction1

In almost any decision-making task that humans face, the time taken to make a choice is a2

key dependent variable and conveys a great deal about the underlying cognitive processes.3

In order to relate choice response times (RTs) to some set of underlying processes, a general4

class of “sequential sampling models” has been developed to account for the time-course5

of human decision-making (e.g., Ratcliff 1978; Vickers 1979; Smith & Van Zandt 2000).6

Drawing on research in the statistics literature on sequential analysis (e.g., Wald 1947,7

see also Stone 1960), the central insight is to recognize that people seek to make good8

decisions quickly, and so have to solve a speed-accuracy trade-off. In general, taking the9
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Fig. 1. Illustrations showing a discrete-time random walk model (left) and a continuous-time
diffusion model (right). In the left panel, the axes used correspond to “evidence for A” and
“evidence for B”, so time (or more precisely, sample size) runs diagonally from the bottom left
to the top right. In the right panel, the axes are rotated 45 degrees, and thus correspond to
“time” and “state of evidence”.

time to collect more information about the problem at hand (whatever it may be) should10

be expected to improve accuracy, but at the obvious cost of actually taking more time11

to do so. Good introductions to the area are provided by Luce (1986), Van Zandt (2000)12

and Ratcliff and Smith (2004).13

The highly successful diffusion model proposed by Ratcliff (1978) is an example of a se-14

quential sampling model: it assumes that, when asked to make simple perceptual decisions15

such as “is this line longer than that line?” the visual system samples evidence from the16

external stimulus environment, and continues to do so until some termination criterion is17

met. In both “random walk” and “diffusion” models, the process stops when the evidence18

for response A exceeds that for response B by some amount. If one were flipping a coin to19

determine if it is biased towards heads or tails, this might correspond to a “keep flipping20

until the number of heads exceeds the number of tails by 4 (or vice versa)”, as illustrated21

in the left panel of Figure 1. As noted by Wald and Wolfowitz (1948), this decision process22

is statistically optimal when the decision-maker’s loss function involves a simple kind of23

speed-accuracy trade-off. Although other termination rules have been proposed on the24

basis of psychological (Vickers 1979) and statistical (Frazier & Yu 2008) considerations,25

this rule remains the dominant approach in the literature.26

Besides the termination rule, the most fundamental assumption made by the diffusion27

model is that the sampling process involved operates very quickly but with a lot of noise,28

with the result that it convenient to assume that evidence accrues continuously, rather29

than in terms of discrete samples. When constructing this model (e.g., Feller 1968, Ratcliff30
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1978) it is typical to derive the continuous-time “diffusion” model as a limiting version31

of the discrete-time “random walk” model. If we let X(t) denote the “state of evidence”32

at time t, the result is a Wiener diffusion process: a simple dynamic system in which the33

state of evidence evolves via the stochastic differential equation d
dt

X(t) ∼ Normal(v, σ2)34

(see, e.g., Smith 2000 for detailed discussion). Accordingly, the marginal distribution35

over the state of evidence at time t is described by a normal distribution with mean36

vt + z and variance σ2t. The resulting model (illustrated in the right panel of Figure 1)37

for human decision-making treats the choices c and corresponding decision-times td as38

random variables described by the “first passage to absorption” for this Wiener process.39

That is, if the initial state of evidence X(0) lies in the range 0 < X(0) < a, the model40

predicts that a decision is made at the first time t for which X(t) ≤ 0 or X(t) ≥ a, where41

absorption at the lower-boundary (X(t) = 0) corresponds to one possible choice and the42

absorption at the upper boundary (X(t) = a) results in the other choice. Statistically, if43

we fix the Wiener process variance 1 at σ2 = 1 we refer to the resulting distribution as44

the Wiener first-passage time (WFPT) distribution, denoted (c, td) ∼ WFPT(v, a, z).45

The second extension to the simple random walk model that Ratcliff (1978) made when46

constructing the diffusion model was to assume that the start point z and the drift rates47

v are also random variables (generally uniformly-distributed and normally-distributed,48

respectively), and may differ for every observed decision. Similarly, it is assumed that49

observed response times consist of both the decision time td and time for stimulus encoding50

and motor response generation ter, so the actual RT is given by td + ter, where ter is also51

assumed to be a random variable (usually uniformly distributed). Finally, in some versions52

of the model an explicit treatment is given for outlier data, where the decision-maker is53

assumed to be generating “junk” data with some (small) probability (Ratcliff & Tuerlinckx54

2002). As a result, the full diffusion model is fairly complex, and contains a number of55

psychologically-meaningful parameters (e.g., Voss, Rothermund & Voss, 2004).56

In this paper, we consider the Wiener first passage time distribution that forms the core57

of the diffusion model, namely WFPT(v, a, z). Our approach is somewhat different to58

recent proposals by Tuerlinckx (2004) and Voss and Voss (2008) in that our goal is to59

consider the faster computation of the WFPT distribution, not the full model with the60

additional random variables. It also differs from the approach taken by Wagenmakers, van61

der Maas & Grasman (2007), in that we do not place any restrictions on the parameters62

(but see Grasman, Wagenmakers & van der Maas, in press, for a more general approach),63

and from that of Brown, Ratcliff and Smith (2006) and Diederich and Busemeyer (2003)64

who focus on general simulation methods. Our choice to focus on the model at this65

level of generality is deliberate – in the “narrow” context of modelling choice and RT in66

simple two-alternative decision tasks, we envision that faster WFPT calculations would67

1 Ratcliff (1978) fixes σ = 0.1, which has some practical advantages but is mathematically
inconvenient for our purposes. Following Voss, Rothermund & Voss (2004) and Lee, Fuss &
Navarro (2006), we use the σ = 1 version, and note that this means that estimates of v, a and
z will all be 10 times the size of the corresponding estimates in Ratcliff’s formalization.
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Fig. 2. A deliberately-extreme example of the kinds of pathologies that can occur when WFPT
probability densities are calculated inappropriately. In this case, we produce the figure using the
method described by Ratcliff & Tuerlinckx (2002) to approximate the cdf, and approximating
the pdf via finite differencing. To produce errors of this magnitude, we terminate the sums far
too early, using a 10−3 termination rule rather than the standard 10−29 rule. Large errors are
observed at small t, even though the calculations in this case involve the evaluation of up to 60
terms.

sit naturally within the Bayesian hierarchical characterization of the “full” diffusion model68

(Lee, Fuss & Navarro, 2007; Vandekerckhove, Tuerlinckx & Lee, 2008). A major advantage69

of the Bayesian approach is that it allows any class of extensions to the diffusion model to70

be handled efficiently using modern computational statistics (e.g., Chen, Shao & Ibrahim71

2000), so long as the WFPT distribution itself is tractable: in fact, Lee et al (2007) and72

Vandekerckhove et al (2008) both present simple extensions of this kind, in which explicit73

psychophysical functions are used to constrain drift rates across experimental conditions.74

Nevertheless, since the “standard” calculation of the WFPT distribution can sometimes75

require the evaluation of hundreds of terms in order to avoid pathologies at small RT76

values (see Figure 2 for an exaggerated example), the kind of large-scale computational77

methods that have become available for modelling higher-order cognition (e.g., Kemp &78

Tenenbaum 2008, Griffiths, Steyvers & Tenenbaum, 2007) are currently infeasible. What is79

required is a simple, pathology-free method for quickly computing the WFPT distribution80

with near-zero error. We provide such a method in this paper.81

2 Computing the first-passage time densities82

As the previous discussion makes clear, the most important aspect to the diffusion model83

is the WFPT distribution, parameterized by drift v, boundary separation a and start84

point z. It is convenient, however, to rewrite the start point (which varies from 0 to a)85
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as a relative start point w = z/a (which varies from 0 to 1). Given this, the probability86

density function for the WFPT distribution, which describes the chance that the diffusion87

process is absorbed at time t at the lower boundary will be denoted by f(t|v, a, w).88

An analytic expression for this probability density was provided by Feller (1968, ch. 14,89

eq. 6.15). When written using the notation introduced above, the formula given for this90

WFPT density is, 2
91

f(t|v, a, w) =
π

a2
exp

(

−vaw − v2t

2

) ∞
∑

k=1

k exp

(

−k2π2t

2a2

)

sin(kπw). (1)
92

The probability density at the upper boundary is straightforward to obtain, by setting93

v′ = −v and w′ = 1−w. Algebraically, one nice aspect to the expression is that it factorizes94

very simply, allowing the three-parameter density function to be written as follows:95

f(t|v, a, w) =
1

a2
exp

(

−vaw − v2t

2

)

f
(

t

a2
| 0, 1, w

)

. (2)
96

This expression makes clear that we can, without loss of generality, consider the case97

where a = 1 and v = 0, and hence reduce the problem of calculating the general first98

passage density f(t|v, a, w) to the problem of calculating a standard case, f(t|0, 1, w).99

Accordingly, we now turn our attention to the calculations involved in this case.100

When calculating WFPT densities, a typical approach is to make use of this “large time”101

expansion (e.g., Ratcliff 1978; Luce 1986; Ratcliff & Tuerlinckx 2002; Ratcliff & Smith102

2004; Tuerlinckx 2004). In terms of the standard case f(t|0, 1, w), we rely on the series:103

f(t|0, 1, w) = π
∞
∑

k=1

k exp

(

−k2π2t

2

)

sin(kπw). (3)
104

However, Feller also provides a different “small time” representation that is less frequently105

used (but see Van Zandt 2000, Van Zandt, Colonius & Proctor 2000, Voss, Rothermund106

& Voss 2004). It is given within problem 22 in Feller (1968, ch 14), and is produced107

by finding limiting versions of a slightly different treatment of the discrete-time random108

2 Strictly, we should refer to this expression as describing a probability density component at
time t at the lower boundary. When integrated over t, the expression yields the choice probability
corresponding to the lower boundary. The lower boundary mass plus the upper boundary mass
sum to 1 with probability 1. However, for the sake of simplicity we use the term “probability
density function” in an unqualified fashion and assume that the more technical sense is clear
from context.
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walk model than the one that produces the large-time expansion. For our purposes, what109

matters is that this alternative version produces the series:110

f(t|0, 1, w) =
1√
2πt3

∞
∑

k=−∞
(w + 2k) exp

(

−(w + 2k)2

2t

)

. (4)
111

(The reason for referring to two different representations of the WFPT densities as “large112

time” and “small time” expansions will be made explicit shortly). Obviously, since both113

expressions involve the evaluation of infinite sums, any implementation of the diffusion114

model must rely on a truncated version of one of these two series. In the case of the usual115

large-time version, the natural way to truncate the sum is to stop calculating terms once116

k exceeds some threshold value. Thus, in order to restrict the calculation to κ terms we117

obtain118

f ℓ
κ(t|0, 1, w) = π

κ
∑

k=1

k exp

(

−k2π2t

2

)

sin(kπw) (5)
119

The small-time version is slightly more complicated since the series extends to infinity in120

both directions. In this case, a simple way to restrict the sum to κ terms is to use121

f s
κ(t|0, 1, w) =

1√
2πt3

⌊(κ−1)/2⌋
∑

k=−⌈(κ−1)/2⌉
(w + 2k) exp

(

−(w + 2k)2

2t

)

, (6)
122

where ⌊·⌋ and ⌈·⌉ are the floor and ceiling functions respectively.123

When calculating diffusion model predictions, the difficult part is to choose a value of124

κ to govern the truncation. For instance, a commonly-used approach (e.g., Ratcliff &125

Tuerlinckx 2002) is to continue to compute the series until the value of the cumulative126

distribution function changes by less than 10−29 times the current value of the sum for127

two successive terms. While this seems to be an intuitively reasonable heuristic, a better128

approach would be to specify some acceptable degree of approximation error, and then129

compute the minimum number of terms required to ensure that the truncated sum meets130

the required tolerance. That is, choose κ such that the calculated density fκ(t|0, 1, w)131

deviates from the true value f(t|0, 1, w) by no more than some target error level ǫ,132

|fκ(t|0, 1, w)− f(t|0, 1, w)| < ǫ. (7)133

Of course, since the true value of the density is necessarily unknown, we cannot calculate134

this error (henceforth denoted Eκ(t)) exactly, but we can put an upper bound on it,135

meaning that we can instead choose the smallest value of κ for which we can prove that136

the truncation error remains below ǫ.137
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Fig. 3. Number of terms κ required to guarantee a truncation error below .001, for both the
large-time (Equation 10) and small-time (Equation 11) versions. For t less than approximately
0.15 the number of terms required is smaller for the small-time expansion, after which time the
large-t version is superior.

In Appendix A we show that the absolute error Eℓ
κ(t) that results from approximating138

the function f(t|0, 1, w) by the truncated version of the large time expansion f ℓ
κ(t|0, 1, w)139

satisfies the inequality140

Eℓ
κ(t) ≤

1

πt
exp

(

−κ2π2

2
t

)

(8)
141

so long as κ ≥ 1/(π
√

t). Similarly, in Appendix B we show that the error Es
κ(t) that results142

from using the truncated small-time series f s
κ(t|0, 1, w) is bounded above as follows:143

Es
κ(t) ≤

1

2
√

2πt
exp

(

−(κ − 2)2

2t

)

, (9)
144

a result which holds for κ > 1 +
√

t. Note that these two expressions illustrate why we145

refer to Equation 3 as the large-time expansion, since the error in Equation 8 tends to be146

largest at small t. Similarly, since the error implied by Equation 9 is largest at large t, we147

refer to Equation 4 it as the small-time expansion.148

Rearrangement of these bounds implies that, in order to guarantee a truncation error149
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below ǫ the number of terms needed is150

κ ≥
√

−2 log(πtǫ)

π2t
(10)

151

for the large-time approximation, whereas for the small-time approximation the corre-152

sponding number of terms is given by153

κ ≥ 2 +
√

−2t log(2ǫ
√

2πt). (11)154

In both cases it is assumed that the expressions are real valued: when the small-t version155

is used, the error tolerance should be set such that ǫ ≤ 1/(2
√

2πt). However, in such cases156

it is straightforward to lower the value of ǫ to 1/(2
√

2πt), which yields the requirement157

that κ ≥ 2. A similar constraint applies to the large-t version, namely that ǫ ≤ 1/(πt).158

Lowering ǫ to the smallest allowable value would lead to κ ≥ 0, but since the derivation159

of the error bound only holds for κ ≥ 1/(π
√

t), this sets the value of κ in this case.160

These functions are shown in Figure 3, for ǫ = .001. Note that across all values of t, it161

would take no more than four terms to keep the truncation error within this tolerance162

for at least one of the two versions. More generally, for a fixed error level ǫ, in order to163

minimize the number of terms evaluated, the bounds imply that we should use the small164

t version when the function165

λ(t) = 2 +
√

−2t log(2ǫ
√

2πt) −
√

−2 log(πtǫ)

π2t
(12)

166

is less than zero. To illustrate why this changeover occurs, Figure 4 plots the κ = 3167

approximations for both the small-time version and the large-time version, for w = .5. As168

one would expect given the nature of the bounds described earlier, the two expansions169

show pathologies in different parts of the density function: the large-t approximation170

(dashed lines) works poorly at small time values, while the small-t approximation (solid171

lines) works poorly at larger time values. This suggests the natural approximation:172

f(t|0, 1, w) ≈



































1√
2πt3

⌈(κ−1)/2⌉
∑

k=−⌊(κ−1)/2⌋
(w + 2k) exp

(

(w + 2k)2

2t

)

if λ(t) < 0

π
κ
∑

k=1

k exp

(

−k2π2t

2

)

sin (kπw) if λ(t) ≥ 0

, (13)

173

where, as indicated earlier, we construct the more general pdf via the relationship in174

Equation 2. It should be noted that the basic idea is not new – for instance, Van Zandt et175

al. (2000) compute WPFT predictions by switching between the small-time and large-time176
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Fig. 4. The κ = 2 truncations for the small-time and large-time expansions (left), as compared
to the true density (right). As one might expect, the large-time version (dashed line) performs
very poorly for small values of t when only two terms are used, while the small-time version
(solid line) performs poorly in the tails.

versions, using a heuristic method (Van Zandt, personal communication) to govern the177

changeover. The novel aspect to our proposal is that the function λ(t) allows the switch178

to be made in an analytically-derived fashion, and the total number of terms computed is179

governed by the explicit derivation of the error bounds introduced above. MATLAB code180

implementing this method is attached in Appendix C.181

3 Effectiveness of the Method182

We now turn to some simple tests of the effectiveness of the proposed method for com-183

puting the WFPT distribution. As a first test, Figure 5 plots the Wiener first passage184

time predictions for a process with v = 1, a = 2 and z = .5. On the left, predictions are185

made using the slower “classical” method discussed in Ratcliff & Tuerlinckx’s (2002) pa-186

per: namely, to terminate when two successive terms in the cdf calculation remain below187

10−29 times the current value of the sum. In the middle, predictions are made using the188

“fast truncations” presented in this paper (i.e., using Equation 13), with a stringent error189

tolerance ǫ = 10−29 so as to roughly mimic the standard applied in the classical version.190

The panel on the right shows the difference between the two versions, which is very small.191

Although the two methods make very similar predictions, they differ dramatically in the192

amount of computation required to do so, as shown in Figure 6, which shows the number193

of terms required to compute both versions, as a function of t. At large t the two versions194

are comparable, which is what one would expect since for these t values both approaches195

rely on Equation 4. At small t, the classical method needs to calculate a very large number196
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Fig. 5. Illustration of the performance of the approximation, for v = 1, a = 2 and z = .5. The left
panel shows model predictions calculated using the “slow” classical method, while the middle
panel shows the predictions calculated using the fast truncation method suggested here. As is
illustrated in the panel on the right, the differences between the two predictions (fast minus
slow) are minimal.
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Fig. 6. Illustration of the extent of the speed up: the number of terms required to calculate the
slower classical heuristic (dotted) and fast truncation (solid) predictions from Figure 5, in which
ǫ = 10−29. Also note that the full extent of the speed up for very small t is masked since the
dotted line accelerates very rapidly beyond the bounds of the plot. For instance, at t = .001,
the slow version required 227 terms, compared to a mere 8 terms required at worst for the fast
version.

of terms in order to avoid the pathologies observed in Figure 2: at t = .001, the number197

required was 227 terms. In comparison, the fast truncation method never required more198

than 8 terms to be evaluated.199
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This illustration highlights a few key points. Firstly, since explicit bounds are used to200

control the truncation, the accuracy of the approach is guaranteed (as per Figure 5): the201

main issue at hand is how fast this accuracy can be obtained (as in Figure 6). Secondly, as202

Figure 6 makes clear, the classical method can be made to perform as poorly as desired,203

simply by taking t as close to zero as we like. Thirdly, since the fast method (by definition)204

uses whichever of the small t and large t versions is superior, it is never worse than the205

existing method. Taken together, these observations make clear that there is little to206

be learned by making extensive comparisons between the two approaches. Rather, the207

interesting question relates mainly to the number of terms required for different values of208

t and ǫ. For the standard case, f(t|0, 1, w), the number of terms required is illustrated in209

Figure 7: since the top of the figure corresponds to the case where ǫ = 10−30 it is clear210

that one would have to set an extraordinarily low tolerance for error before requiring more211

than 10 terms for any value of t. Indeed, given the imprecision associated with real data,212

one would rarely expect to be calculating more than 5 terms when using this method.213

The general case is a straightforward extension: all that is needed is to take account of214

the additional multiplicative term in Equation 2, namely (1/a2) exp (−vaw − v2t/2).215
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4 Conclusion216

The main goal of this paper was to find a method for computing finite approximations217

to the WFPT distribution with as little effort as possible. By deriving upper bounds on218

the truncation errors associated with Feller’s small-time and large-time expansions of the219

true density, we are able to propose a hybrid method that uses whichever of these two220

methods is most appropriate. The number of terms required in our simulations never ex-221

ceeded 8, even when the error tolerance ǫ was set to unnecessarily low levels, and in no222

case did the method produce negative probability densities. We hope that this method223

will assist in the application of models reliant on this distribution, such as the full dif-224

fusion model (Ratcliff 1978) and its extensions (e.g., Lee et al., 2007; Vandekerckhove et225

al. 2008). In particular, most Bayesian estimation methods (e.g., Chen et al. 2000) rely226

heavily on the use of the exact probability density functions rather than χ2 statistics,227

for instance, and so can benefit from this approach. Moreover, the Bayesian framework228

lends itself naturally to the development of rich, hierarchically structured stimulus repre-229

sentations (e.g., Kemp & Tenenbaum, 2008; Griffiths et al. 2007). In our view, tractable230

WFPT distributions allow psychologically-plausible models for decision-times to be in-231

tegrated with psychologically-interesting approaches to stimulus representation, allowing232

the construction of time-sensitive models for complex, real-world decisions.233
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A Large-time error bound303

In this section we derive the upper bound referred to in Equation 8, since this is the easier304

of the two bounds to construct. To do so, we begin by defining the function305

g(k, t, w) = k exp

(

−k2π2t

2

)

sin(kπw), (A.1)
306

corresponding to the kth term in the series in Equation 3. Accordingly, the truncation307

error that results when one uses only the first κ terms in the large-time expansion is given308

by the magnitude of the sum of the remaining terms:309

Eℓ
κ(t) = π

∣

∣

∣

∣

∣

∣

∞
∑

k=κ+1

g(k, t, w)

∣

∣

∣

∣

∣

∣

. (A.2)
310

Using the convexity of the absolute value function, we can state that311

Eℓ
κ(t) ≤ π

∞
∑

k=κ+1

|g(k, t, w)| . (A.3)
312

This is equivalent to making the “worst case” assumption that all of the omitted terms are313

working in concert and do not cancel out at all. Moreover, noting that −1 ≤ sin(kπw) ≤ 1314

and thus | sin(kπw)| ≤ 1 we can place a very simple bound on the error, since315

|g(k, t, w)|= k exp

(

−k2π2t

2

)

|sin(kπw)| (A.4)

≤ k exp

(

−k2π2t

2

)

. (A.5)
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If we apply this inequality to our existing bound, we obtain the new bound:316

Eℓ
κ(t) ≤ π

∞
∑

k=κ+1

k exp

(

−k2π2t

2

)

. (A.6)
317

Now consider the function h(k, t) = k exp(−k2π2t
2

) that describes the summands involved318

in this new upper bound. From inspection it is clear that for small k the linear term will319

dominate and the function will be increasing. For larger k, however, the exponential term320

dominates and the function is decreasing. The stationary point at which this occurs is321

found by setting d
dk

h(k, t) = 0, which occurs when k = 1/(π
√

t) and trivially as k → ∞.322

When k is below this critical value, the amplitude of the sinusoidal terms is increasing,323

and it would probably be unwise to truncate the sum at any such value. So the interesting324

cases occur when κ ≥ 1/(π
√

t), and in these cases we may treat h(k, t) as a monotonic325

decreasing function of k. Given this, note that the sum in question is in effect a rectangle326

approximation to the corresponding integral, and so elementary integration theory gives327

us the following inequalities:328

b
∑

x=a+1

h(x) ≤
b
∫

a

h(x)dx ≤
b−1
∑

x=a

h(x). (A.7)
329

The left inequality allows us to use the integral as an upper bound on the sum. Applying330

this inequality and solving the integral gives us the error bound referred to in the main331

text:332

Eℓ
κ(t)≤π

∞
∫

κ

k exp

(

−k2π2t

2

)

dk (A.8)

=
1

πt

∞
∫

κπ
√

t/2

2u exp(−u2)du (A.9)

=
1

πt
exp

(

−κ2π2t

2

)

. (A.10)

As noted previously, this bound holds for all interesting cases (i.e., when κ > 1/(π
√

t)). In333

short, the bound derived above holds for large t, and in those cases the truncation error334

is provably small.335
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B Small-time error bound336

We now turn to the derivation of the upper bound on the error associated with truncating337

the small-time expansion of the first-passage time density. Since the expansion now in-338

volves a sum from −∞ to +∞, the derivation is a little more complex, and so we need to339

be somewhat more careful. In this instance, the function we are interested in truncating340

is the one from Equation 4341

f(t|0, 1, w) =
1√
2πt3

∞
∑

k=−∞
(w + 2k) exp

(

−(w + 2k)2

2t

)

. (B.1)
342

It is convenient to partition the sum into two parts such that f(t|0, 1, w) = 1√
2πt3

(S++S−),343

where344

S+ =
∞
∑

k=0

(w + 2k) exp

(

−(w + 2k)2

2t

)

and (B.2)

S− =
−1
∑

k=−∞
(w + 2k) exp

(

−(w + 2k)2

2t

)

. (B.3)

Having done so, we can rewrite S− as follows:345

S− = −
∞
∑

k=1

(−w + 2k) exp

(

−(−w + 2k)2

2t

)

. (B.4)
346

This allows us to rewrite the first passage time density as347

f(t|0, 1, w)=
1√
2πt3

[ ∞
∑

k=0

(w + 2k) exp

(

−(w + 2k)2

2t

)

−
∞
∑

k=1

(−w + 2k) exp

(

−(−w + 2k)2

2t

)]

(B.5)

Using this expression, we define our truncated series by allowing the indexing variable k348

to stop at some finite value in both of the two sums. So, if we set κ = 1, this yields349

f1(t|0, 1, w) =
1√
2πt3

w exp

(

−w2

2t

)

, (B.6)
350

which is similar to the small-time approximation used by Lee, Fuss & Navarro (2007).351

More generally, however, if κ is an even positive integer then352
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fκ(t|0, 1, w)=
1√
2πt3





(κ−2)/2
∑

k=0

(w + 2k) exp

(

−(w + 2k)2

2t

)

−
κ/2
∑

k=1

(−w + 2k) exp

(

−(−w + 2k)2

2t

)



 (B.7)

and if κ is an odd integer larger than 1 then353

fκ(t|0, 1, w)=
1√
2πt3





(κ−1)/2
∑

k=0

(w + 2k) exp

(

−(w + 2k)2

2t

)

−
(κ−1)/2
∑

k=1

(−w + 2k) exp

(

−(−w + 2k)2

2t

)



 . (B.8)

Taken together, Equations B.6, B.7 and B.8 correspond to a rewritten version of the354

finite-term truncation described in Equation 6. With that in mind, the truncation error355

associated with Equation 6 can be described in the following way when κ is an even356

positive integer:357

Es
κ(t) =

1√
2πt3

∣

∣

∣

∣

∣

∣

∞
∑

k=κ/2

(w + 2k) exp

(

−(w + 2k)2

2t

)

−
∞
∑

k=(κ+2)/2

(−w + 2k) exp

(

−(−w + 2k)2

2t

)

∣

∣

∣

∣

∣

∣

. (B.9)

Similarly, when κ is odd, then the error is given by358

Es
κ(t) =

1√
2πt3

∣

∣

∣

∣

∣

∣

∞
∑

k=(κ+1)/2

(w + 2k) exp

(

−(w + 2k)2

2t

)

−
∞
∑

k=(κ+1)/2

(−w + 2k) exp

(

−(−w + 2k)2

2t

)

∣

∣

∣

∣

∣

∣

. (B.10)

In the even case (B.9) the first series is larger than the second series if t < κ2. This can be359

seen to be true by noting that if t < κ2 then the leading term of the first series is larger360

than the leading term of the second series and similarly for each successive pair of terms:361

hence, the first series is larger than the second. Given this observation, in order to obtain362

a simple bound on Es
κ(t), we derive an upper bound for the first sum, and subtract from363

it a lower bound for the second sum. In the odd case (B.10) the opposite applies, and364

so our bound is constructed in the opposite fashion, by finding an upper bound on the365

second sum and subtracting that from a lower bound on the first sum.366
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In all cases, we are seeking upper and lower bounds for functions of the form367

S =
∞
∑

k=ν/2

(c + 2k) exp

(

−(c + 2k)2

2t

)

. (B.11)
368

Applying the logic used in Appendix A, we define a function of k that corresponds to the369

summands,370

g(k) = (c + 2k) exp

(

−(c + 2k)2

2t

)

. (B.12)
371

As before, the function is initially increasing since the linear term dominates, but for larger372

k it becomes a decreasing function since the exponential term comes to dominate. Again,373

the stationary point is found by setting d
dk

g(k) = 0, which occurs when k = (
√

t − c)/2374

and also as k → ∞. Thus, g(k) may be treated as a monotonic decreasing function so long375

as κ >
√

t−c−1. Repeating the observation made in Appendix A, we can use elementary376

integration theory to show that377

∞
∫

ν/2

(c + 2k) exp

(

−(c + 2k)2

2t

)

dk ≤
∞
∑

k=ν/2

(c + 2k) exp

(

−(c + 2k)2

2t

)

(B.13)
378

and379

∞
∑

k=ν/2

(c + 2k) exp

(

−(c + 2k)2

2t

)

≤
∞
∫

(ν−2)/2

(c + 2k) exp

(

−(c + 2k)2

2t

)

dk. (B.14)
380

Evaluation of the integrals gives381

t

2
exp

(

−(c + ν)2

2t

)

≤
∞
∑

k=ν/2

(c + 2k) exp

(

−(c + 2k)2

2t

)

≤ t

2
exp

(

−(c + ν − 2)2

2t

)

.(B.15)
382

Hence, to construct the bound for even-valued κ, we apply the upper bound to the first383

sum and the lower bound to the second sum, which gives us the expression:384

Es
κ(t) ≤

1

2
√

2πt

[

exp

(

−(w + κ)2

2t

)

− exp

(

−(w + κ + 2)2

2t

)]

. (B.16)
385

In contrast, if κ is odd-valued, then we apply the lower bound to the first sum, and386

subtract this off the upper bound for the second sum (since in this case the second sum387
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is always the larger one). This gives388

Es
κ(t) ≤

1

2
√

2πt

[

exp

(

−(−w + κ − 1)2

2t

)

− exp

(

−(w + κ + 1)2

2t

)]

. (B.17)
389

To simplify matters, we note that since the exponential function is positive valued, we390

can set 0 as an upper bound on the − exp(x) terms in both equations. Similarly, since391

0 ≤ w ≤ 1 we can set it to the worst possible value (w = 0 for even κ and w = 1 for odd392

κ). By doing so we observe that, irrespective of whether κ is odd or even,393

Es
κ(t) ≤

1

2
√

2πt
exp

(

−(κ − 2)2

2t

)

, (B.18)
394

which is the error bound in Equation 9. As observed above, this bound only holds for395

sufficiently large κ, which in this case corresponds to κ >
√

t−c. Noting that the smallest396

value of c used in any of the expressions is −1, we can state that this bound holds for397

κ >
√

t +1. In short, this bound holds for small t, and in those cases the truncation error398

is provably small.399

C MATLAB code400

function p=wfpt(t,v,a,z,err)401

402

tt=t/(a^2); % use normalized time403

w=z/a; % convert to relative start point404

405

% calculate number of terms needed for large t406

if pi*tt*err<1 % if error threshold is set low enough407

kl=sqrt(-2*log(pi*tt*err)./(pi^2*tt)); % bound408

kl=max(kl,1/(pi*sqrt(tt))); % ensure boundary conditions met409

else % if error threshold set too high410

kl=1/(pi*sqrt(tt)); % set to boundary condition411

end412

413

% calculate number of terms needed for small t414

if 2*sqrt(2*pi*tt)*err<1 % if error threshold is set low enough415

ks=2+sqrt(-2*tt.*log(2*sqrt(2*pi*tt)*err)); % bound416

ks=max(ks,sqrt(tt)+1); % ensure boundary conditions are met417

else % if error threshold was set too high418

ks=2; % minimal kappa for that case419
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end420

421

% compute f(tt|0,1,w)422

p=0; %initialize density423

if ks<kl % if small t is better...424

K=ceil(ks); % round to smallest integer meeting error425

for k=-floor((K-1)/2):ceil((K-1)/2) % loop over k426

p=p+(w+2*k)*exp(-((w+2*k)^2)/2/tt); % increment sum427

end428

p=p/sqrt(2*pi*tt^3); % add constant term429

430

else % if large t is better...431

K=ceil(kl); % round to smallest integer meeting error432

for k=1:K433

p=p+k*exp(-(k^2)*(pi^2)*tt/2)*sin(k*pi*w); % increment sum434

end435

p=p*pi; % add constant term436

end437

438

% convert to f(t|v,a,w)439

p=p*exp(-v*a*w -(v^2)*t/2)/(a^2);440
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