
Similarity, Distance and Categorization: A Discussion
of Smith’s (2006) Warning About “Colliding

Parameters”

Daniel J. Navarro

School of Psychology

University of Adelaide

May 11, 2007

Abstract

The idea that categorization decisions rely on the subjective impression of
similarity between stimuli has been prevalent in much of the literature over
the past 30 years, and led to the development of a large number of models that
apply some kind of decision rule to similarity measures. A recent paper by
Smith (2006) has argued that these ‘similarity-choice’ models of categorization
have a substantial design flaw, in which the similarity and choice components
effectively cancel one another out. As a consequence of this cancellation, it
is claimed that the relationship between distance and category membership
probabilities is linear in these models. In this paper, I discuss these claims,
and show mathematically that in those cases where it is sensible to discuss the
relationship between category distance and category membership at all, the
function relating the two is approximately logistic. Empirical data are used
to show that a logistic function can be observed in appropriate contexts.
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If every stimulus in our world were perceived as an entirely unique object, people would
be inundated with an immense amount of pointless information. So we organize objects
into categories, allowing us to describe the world in a simpler manner and to generalize
better to novel situations. Not surprisingly then, understanding the nature of human
concepts and the way in which they shape our categorization behavior has remained one
of the central topics in cognitive psychology. Ever since the decline of the classical view of
concepts which assumed that a category could be held together via a collection of features
both necessary and sufficient to determine category membership, one of the key ideas in
psychological theories has been that a category can be held together by a loose family
resemblance among objects. According to this resemblance view of categorization (Rosch,
1978), it is the similarities between things that govern the extent to which people judge
an item to belong to a category.

When formalized as cognitive models (e.g., Medin & Schaffer, 1978; Nosofsky, 1984),
similarity-based theories rely on two key assumptions. Firstly, they assume that the
subjective sense of similarity between items decreases very rapidly (exponentially, in fact)
as the items are made more ‘distant’ in some suitable sense. Secondly, in order to account
for behavior in forced-choice tasks, the models incorporate some kind of choice rule. In a
recent article, Smith (2006) argues that these ‘similarity-choice models’ for categorization
suffer from a major design flaw, resulting from a complex interaction between these two
assumptions. In effect, he argues that similarity and choice ‘cancel’, leaving a simple
linear function relating category distance to category membership probabilities. The
implication of the claim is that we might benefit by discarding the framework provided
by similarity-based models of categorization, and replacing them with models that predict
category membership by applying linear functions to distances. Citing work by Roberts
and Pashler (2000), the paper emphasizes the importance of thinking about more than a
model’s data-fit, and the value of examining the internal structure of cognitive models;
since it is just such an analysis that uncovers the cancellation effect.

In terms of the general suggestion that modelers need to be aware of complex inter-
actions between parameters that can arise in some cases, it is difficult to disagree with
Smith. Indeed, in recent years an extensive literature has built up regarding how to
measure model performance in an appropriate way (e.g., Balasubramanian, 1997; Pitt,
Myung, & Zhang, 2002; Navarro, Pitt, & Myung, 2004; Myung & Pitt, 1997) and how
to understand the characteristic patterns that a model can produce (e.g., Myung, Kim,
& Pitt, 2000; Pitt, Kim, Navarro, & Myung, 2006). Moreover, these methods have
been frequently applied to the understanding of categorization models, including RULEX
(Navarro, 2005), the Generalized Context Model (Navarro, 2007) and ALCOVE (Pitt et
al., 2006). At a more specific level, it is straightforward to demonstrate that the claim
that similarity and choice ‘cancel’ is incorrect. When the analysis is performed correctly
it becomes clear that, under the assumption that similarity does not dissociate from an
appropriate measure of ‘category distance’, an approximate functional relationship does
exist, but it is described by a logistic equation, not a linear one. When similarity and
category distance dissociate, there is no guarantee that any function of category distance
can adequately describe the behavior of these models.
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The plan of this paper is as follows. The first section provides an overview of similarity-
choice models, which is followed by a simple example that demonstrates that a linear
relationship does not hold in general. After this, I derive the logistic function that relates
distance and category membership when the categories are ‘well-behaved’. This is followed
by a demonstration showing that there is no simple relationship (i.e., neither linear nor
logistic) between the two when the category structures become more complicated. After
doing so, I discuss an empirical example in which the categories are well-behaved and the
non-linear, logistic relationship is observed.

Similarity-Choice Models

In order to construct any mathematical model for how people make judgements about
stimuli, we need a language that allows us to describe stimuli in a sufficiently precise
manner. One common approach (e.g., Tversky, 1977) is to compile a list of characteristics
possessed by an object. For instance, in order to provide a rich enough description of
the coffee cup on my desk, I might note that it (1) is cylindrical, (2) is open at the
top, (3) has a handle, (4) is blue, and (5) has “NIPS 2002” written on it. By way of
comparison, the disposable cup sitting behind it is cylindrical and open at the top, but
it is not blue, lacks a handle and does not have writing on the side. Since each of these
characteristics is binary (the item either has it or it does not), we refer to them as binary
features. We would describe the coffee cup using the feature vector 11111, but would
describe the disposable cup using the feature vector 11000. Any such description could
be called a stimulus representation. Often, the ‘features’ of a stimulus (e.g., its height)
take on continuous values. A continuous-valued feature is often referred to as a dimension,
and there are some subtlties that arise when switching between features and dimensions
(discussed briefly in the Appendix). In a categorization context, we might consider a
domain consisting of n stimuli, each of which can be described in terms of m features.
The ith stimulus, then, is represented by the vector xi = (xi1, . . . , xim), where xik denotes
the value of stimulus i on feature k.

At its simplest, the idea behind resemblance views of categorization is that stimuli that
people perceive as highly similar will be much more likely to belong to the same category.
Accordingly, for the ith and jth stimuli in the domain, a mathematical model requires that
we need to define the stimulus similarity sij between the two. The difficulty, of course, is
that it is not easy to define what we mean by ‘similar’. As philosophers have pointed out
(e.g., Goodman, 1972), it is very easy to end up in a situation where the whole concept of
similarity becomes circular. It is for this reason that psychological approaches to similarity
are described in terms of a specific stimulus representation, and these representations are
constrained by empirical data, generally via the use of multidimensional scaling, additive
clustering, or other related methods (see Shepard, 1980).

One widely-used approach for relating a stimulus representation to a subjective sim-
ilarity relies on Shepard’s (1987) law of generalization, which suggests that if there is
some good way of measuring the psychological distance dij between the two items, then
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similarity decays exponentially with distance,

sij = e−λdij . (1)

In this expression, λ is a parameter that describes how quickly similarity decays with dis-
tance, sometimes referred to as the sensitivity parameter. Obviously, for this relationship
to be useful, we need a good way of describing psychological distance. Although there
are some complexities associated with how inter-stimulus distance should be measured
(see Appendix), for the current purposes it will suffice to add up the differences on each
dimension:

dij =
m∑

k=1

|xik − xjk|. (2)

In order to make a judgement about category memberships, similarity-choice models
construct a measure of the overall similarity between the to-be-classified item (TBCI) and
the category as a whole. In a prototype model, a single idealized category member (the
prototype) is constructed. Having done so, one calculates the distance from the prototype
to the TBCI, and from that, the similarity. In an exemplar model, the similarity siA

between stimulus i and category A is calculated by finding the similarity between stimulus
i to each of the members of category A, and simply taking the sum. To provide a sense of
what these category similarity functions look like for an exemplar model, Figure 1 shows
two simple categories, each consisting of three evenly spaced exemplars, differing only
on the one dimension. The plots show the similarity to each category for every possible
location of the TBCI.

Irrespective of how category similarities are defined, the choice rule applied in these
circumstances is a straightforward normalization (Luce, 1959).1 If the learner is asked
to choose between category A and category B, then the choice rule implies that the
probability P (i ∈ A) with which item i is judged to belong to category A rather than
category B is simply

P (i ∈ A) =
siA

siA + siB
. (3)

The membership probability P (i ∈ A) is sometimes referred to as the category endorse-
ment level.

Relating Distance to Category Membership

The discussion in Smith’s paper revolves around a ‘cancellation’ phenomenon. The basic
idea is that if we take a reasonable measure of the distance between the TBCI and the

1The notion is that the category similarities siA are assumed to act as response strengths v(A) in the
sense discussed by Luce (1959, theorem 3, p. 23). However, since similarity-choice models aim to specify
this scale directly (and by assumption), we should perhaps say that the adoption of this rule is ‘loosely
consistent’ with Luce’s choice axiom. Strictly, we should note that the choice axiom merely implies the
existence of some positive real-valued function v(·) that is defined for all responses that have non-zero
probability, such that the function is independent of the choice set and this normalization rule holds (see
Luce, 1977, for an overview).
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Figure 1: Category similarity functions for two simple one-dimensional categories, shown by the squares
(category A) and circles (category B). The solid line shows the similarity to category B and the dotted
line shows the similarity to category A. The similarity to category for this figure is calculated using an
exemplar model with λ = 1.

two categories and plot the difference between the two distances against the endorsement
probability, we obtain a linear function. The paper presents a number of simulations in
which an approximately linear relationship is observed and concludes that “[t]he cancel-
lation of similarity by choice is mathematically inexorable and will always apply . . . even
when distance and similarity dissociate” (Smith 2006, p. 748). If true, the cancellation
hypothesis suggests that we might very well be able to replace the entire framework of
resemblance and choice with a much simpler class of linear models. A number of findings
might need to be reinterpreted in light of the new linear categorization models that would
emerge. In view of the potential importance of this result, it is worth examining this
‘linear cancellation hypothesis’ in some detail.

To provide a sense of the problem with the linear cancellation hypothesis, it is instruc-
tive to consider the two categories shown in Figure 1. The categories are very simple,
since stimuli vary only along a single dimension. Category A consists of three exemplars
on the left, and category B consists of three exemplars on the right. If the cancellation
phenomenon holds as generally as Smith’s article implies, it would not be unreasonable
to expect it to emerge if we apply an exemplar model to these categories. Unfortunately,
it does not, as is illustrated by Figure 2. Applying much the same approach as Smith, we
can trace out the functional relationship between average distance and endorsement that
emerges for these two categories. In this figure, panel a shows the endorsement values for
all possible locations of the TBCI, calculated by taking the category similarity functions
in Figure 1 and applying the choice rule (Equation 3). In panel b, we then calculate the
average distance between the TBCI and the category members, for all possible locations
of the TBCI. Panel c then takes the difference in category distances (i.e., how much closer
the TBCI is to category B than to category A) and plots it with the dashed line. To
complete the demonstration, panel d plots the two functions against one another, giving
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Figure 2: Constructing the distance-endorsement relationship for the two categories in Figure 1. Panel
a shows the endorsement values for all possible locations of the TBCI, calculated by taking the category
similarities in Figure 1 and applying the choice rule (Equation 3). The solid line shows the probability
of endorsing category B (circles), while the dotted line shows the probability of endorsing category
A (squares). In panel b, we then calculate the average distance between the TBCI and the category
members, for all possible locations of the TBCI. Again solid lines are category B, while the dotted lines
are category A. In panel c, the dashed line takes the difference in average distances (i.e., how much closer
the TBCI is to category B than to category A). For comparative purposes, the category endorsement
function for category B is plotted alongside, again using a solid line. The locations of the various category
exemplars on both functions are shown. Finally, panel d plots the two functions from panel c against one
another using the dash-dotted line, giving us the relationship between distance and endorsement.
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us the relationship between distance and endorsement. Clearly, panel d does not depict
a linear function, and suggests a curvilinear function such as a logistic or a cumulative
normal ogive. Although a linear function with slope as a free parameter fits well to the
1500 data points used to construct the function, accounting for 94.5% of the variance
(i.e. r2 = .945), a logistic function ‘fits’ noticeably better, accounting for 99.99998% of
the variance.2 The superior performance in this case arises despite the fact that, as we
will see, no free parameters were involved in ‘fitting’ the logistic function. While it would
be unwise to draw strong conclusions from a single case, the existence of such a simple
counterexample casts some doubt on the claim that the distance-endorsement function is
‘inexorably’ linear.

Deriving the Logistic Function

In order to understand why the relationship depicted in Figure 2 is accounted for so
effectively by a logistic function, it is helpful to recognize that the variables plotted in
panel d are δiA − δiB on the x-axis and P (i ∈ B) on the y-axis, where I have assumed
that the ‘category distance’ δiA is given by the average distance from the TBCI to the
members of category A,

δiA =
1

nA

∑

j∈A

dij . (4)

In this expression, nA counts the number of items in category A. It is very important
to recognize that this average distance measure is not explicitly used in similarity-choice
models: it is for this reason that the symbol δ is used instead of d. Since δ is not part
of the model, there is no guarantee that there is any particular relationship between this
‘category distance’ measure and the endorsement probabilities. However, the measure is
fairly interpretable, and since the distance measures discussed by Smith (2006) tended
to be the average distance δiA (simulation 2), the total distance nAδiA (simulations 3,
5, 7 and 9), or a special case of one of these measures (simulation 1), I will adopt it
here.3 To avoid unnecessary complication, it suffices for the moment to note that the
following derivation relies on the assumption that siA ≈ e−λδiA (a more general treatment
is given in the Appendix). To the extent that this approximation holds (i.e., when category
similarity and average distance do not dissociate), it is straightforward to substitute e−λδiA

into Equation 3 and find the logistic function that relates average distance to category

2When calculating these correlations, I assumed that each location for the TBCI in the range [0,15]
was equally likely, as per Figure 1. Note that a slightly different result would be obtained if we assumed
each ‘difference in category distance’ (as per Figure 2d) was equally likely.

3The measure used in simulation 4 (and hence simulations 6 and 10) is not entirely clear from the
description in the paper, which provides a list of inter-stimulus distances but does not explicitly state what
category distance measure was used. However, the paper does indicate that simulation 4 is analogous to
simulation 2, so it appears that an average measure was used in simulations 4, 6 and 10. In simulation
8, the ‘distance to category’ was not inferred from any stimulus representation, but was instead directly
specified.
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endorsement:

P (i ∈ A) =
siA

siA + siB

≈ e−λδiA

e−λδiA + e−λδiB

=
1

1 + e−λ(δiB−δiA)
(5)

In the initial example, it is this approximation that explained 99.99998% of the variance
with λ fixed at the true value of 1: for all intents and purposes, the approximation is exact
in this case. The non-linearity of Equation 5 makes clear that it is simply incorrect to
make any general claim that similarity any choice ‘cancel’ to produce a linear relationship
between distance and endorsement.

In view of the simplicity of this derivation, it should come as no surprise that it is not
a new result: an almost identical discussion appears in Luce’s (1959, p. 40) treatment
of choice probabilities within Fechner’s psychophysical theory, for instance. Of course, in
Luce’s derivations, the ‘distance measure’ under consideration was rather different from
the average measure δiA used in Equation 5. This provides an illustration of an important
point: the derivation of the logistic function depends only on the assumptions that (1)
the choice rule applies, and (2) it is applied to an exponentiated ‘distance measure’. It
does not depend on the assumption that the category distance measure is the average
inter-stimulus distance δiA or a total inter-stimulus distance nAδiA. This paper focuses
on those measures only because they also appear to be the focus of Smith’s simulations.
However, the same approach would work perfectly well for any summary measure, not just
average distance. For example, we could use the distance from the TBCI to a prototype,
which would produce a logistic function that exactly captures the behavior of a prototype
model.4

The Success and Failure of the Logistic Approximation

Readers familiar with the literature on categorization will note that, since the average
distance measure δiA is not actually used by similarity-choice models, the logistic rela-
tionship in Equation 5 should not be expected to hold universally. In some cases, a logistic
function based on the average distance measure will be a reasonable approximation, but
in other cases it will not. For exemplar models in particular, the approximation can be
made to fall apart very easily. In such cases, of course, a linear approximation also fails.

However, to begin with, I provide a simple illustration of cases where the approxima-
tion works. To that end Figure 3 shows 25 distance-endorsement functions for simple one
dimensional categories that, like the categories in the original example, are constrained

4As an alternative, we could propose a ‘distance’ measure of the form (1/λ) ln
∑

j∈A e−λdij , which
would yield a logistic function that exactly mimics an exemplar model, since this measure is equivalent
to (1/λ) ln siA. However, without a good a priori reason to use this as a genuine measure of category
distance, it would be very misleading to talk about an exact logistic distance-endorsement function for
the exemplar model.
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Figure 3: The distance-endorsement functions for 25 randomly generated categories. Solid lines depict the
exact endorsement function arising from an exemplar model, and the dashed lines represent the logistic
approximation. As per the original example in Figure 1, items vary only along a single continuous
dimension. Each category has three category members, and are constrained so that the categories do
not overlap. Specifically, category A (squares) has one exemplar fixed at 0 and category B (circles) has
one exemplar fixed at 30. The remaining two exemplars for category A are generated from a uniform
distribution on the interval [5,15], while the remaining two exemplars for category B are generated from
a uniform distribution on the interval [15,25]. The specificity λ is drawn from a uniform distribution on
[0,1].

not to overlap. Each panel plots a distance-endorsement function, in exactly the same
way as was done for Figure 2d. However, in this situation four of the six stimuli were
chosen randomly. Specifically, category A has one exemplar fixed at 0 and category B has
one exemplar fixed at 30 (the Appendix discusses the reason for imposing this constraint).
The remaining two exemplars for category A are generated from a uniform distribution on
the interval [5,15], while the remaining two exemplars for category B are generated from
a uniform distribution on the interval [15,25]. The specificity λ is drawn from a uniform
distribution on [0,1]. The true relationships implied by an exemplar model are shown by
solid lines, and the approximations are shown in the dashed lines. In some cases, both
functions look approximately linear, but this is clearly not true in general. On the other
hand, the logistic approximation in Equation 5 is a good fit in all 25 cases (again the
approximation is parameter free, since λ is known).
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Figure 4: A non-logistic ‘function’ arising from the use of the average distance measure δiA in cases where
e−λδiA provides a poor approximation to the category similarities siA in an exemplar model. In this case,
the problem arises because the category exemplars are interleaved in a fairly complex fashion (panel a).
As a consequence, the logistic approximation behaves poorly (panel b), and the relationship between
average distance and category endorsement reverses itself twice (panel c). In panel a, the dotted line
shows similarity to category A (squares) and the solid line shows the similarity to category B (circles)
in an exemplar model with λ = 0.4. In panels b and c, the solid lines shows the true probability in
the model of endorsing each possible TBCI as a member of category B, while the dashed lines show the
logistic approximation.

When we relax the assumption that category similarity and average distance are closely
related, the logistic function no longer applies, and the deviations from linearity can
become quite dramatic. To give a simple example, Figure 4 presents an example of
categories in an exemplar model that yield a very strangely shaped ‘function’, arising
because the category similarity functions siA are not closely related to the exponentiated
average distance measure e−λδiA. In this case, the two categories are interleaved, and as
a consequence the distance-endorsement relationship reverses itself in two places. In fact,
we cannot call this a functional relationship at all: formally, a function y = f(x) is not
allowed to map a single value of x onto multiple values of y. The solid line in panel c
arises by plotting the range of values produced by the function (x, y) = f(z) where z is
the location of the TBCI, x is the category distance and y is the category endorsement.
Clearly, the curve that this traces out in the (x, y) space cannot be described by any
function of the form y = f(x), making both the linear and logistic models inappropriate.

An Empirical Example

To summarize the development so far, in those cases where category similarity is well-
approximated by an exponential function of a summary measure such as average distance
(i.e., when the category structure is ‘well-behaved’), the function relating this distance
measure to category endorsement is approximately logistic (not linear) in form. In those
cases where category similarity and average distance dissociate, neither the logistic nor the
linear function provides a good approximation in general. This final section discusses an
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empirical example involving a well-behaved category structure, and examines the extent
to which the logistic and linear functions can be distinguished in empirical data. Over
a small enough range, the logistic function looks approximately linear (as do all smooth
functions), so it might very well be the case that the two cannot be easily distinguished
by experimental data.

As an attempt to determine the extent to which the two functions can be distinguished,
data were taken from the five participants in condition 1 of experiment 1 reported by
McKinley and Nosofsky (1995). Stimuli were circles with a radial line running through
them, and varied in terms of the angle of the radial line and the size of the circle. Both
categories were probabilistic, and defined in terms of a mixture of two bivariate normal
distributions. To provide a sense of what the participants experienced, the left panel of
Figure 5 plots the stimulus representations for the last 500 items presented to one of the
participants, colored by the category that generated the item. In this plot, light squares
denote items generated from category A, while dark circles denote items generated from
category B. The panel on the right shows the same stimuli, but colored by the category
endorsed by the participant rather than by the true generating category. As these plots
illustrate, the categories are reasonably well-separated and not too complicated in their
shape. As a consequence, there is some reason to suspect that average distance and
category similarity will not strongly dissociate in this task, and the logistic apprximation
will be effective.

In order to construct the empirical distance-endorsement function for each of the five
participants, we can calculate the average distance from each of the 4000 or so observed
stimuli to the two categories. These distances are then binned (e.g., the first bin includes
all stimuli that lie 60-70 units closer to category B than category A), so that we can
calculate for each bin, the probability that each person would choose category A. The
resulting distance-endorsement relationships for each of the 5 participants are plotted in
Figure 6. The error bars are 95% confidence intervals, calculated independently for each
participant and each bin. Simple visual inspection suggests that all five functions are
curvilinear. To see how well the two models perform, I fit a linear function of the form
y = 1

2
+ βx, and logistic function of the form y = (1 + e−λx)−1, where x denotes the

difference in average distance, and y denotes category endorsement. Both functions have
one free parameter, and so in a simple analysis, we might evaluate the two by choosing
β and λ to maximize the variance accounted for (i.e., r2) by the two models. Since the
five individual data sets are almost identical, it is reasonable to average them (see Lee &
Webb, 2005; Navarro, Griffiths, Steyvers, & Lee, 2006, for more formal discussions) before
fitting the two models. In doing so, it turns out that the logistic function can explain
99.0% of the variance, while a linear function explains only 93.6% of the variance.5 To a

5Readers familiar with the model selection literature will recognize that a simple r2 measure of this
kind is not always safe, since superior performance can be an artifact of model complexity (e.g., Myung,
2000). To provide a simple check that this is not the case here, I also undertook a cross-validation analysis
(e.g., Stone, 1974; Browne, 2000), using 10000 random 50-50 splits of the data into training sets and test
sets. For the logistic function the median value for the cross-validated fit remained very high, at 99% of
the variance in the test set. For the linear function, the median fit fell slightly, to 92% of the variance.



Similarity, Distance and Categorization 12

0 50 100 150 200 250
−50

0

50

100

150

200

250

300

A
ng

le
 o

f R
ad

ia
l L

in
e

Radius of Circle in Screen Units

Endorsed Category

0 50 100 150 200 250
−50

0

50

100

150

200

250

300

A
ng

le
 o

f R
ad

ia
l L

in
e

Radius of Circle in Screen Units

Actual Category

Figure 5: The probabilistic category data for one of the participants (#2) in experiment 1 of McKinley
and Nosofsky (1995), condition 1. The panel on the left shows the stimulus representation of the last 500
stimuli presented to the participant, colored by the category to which they belong. Stimuli represented
using light squares were generated from category A, while those represented with dark circles were
generated from category B. The panel on the right shows the same stimuli, but are colored by the
category to which the participant assigned the stimulus.

close approximation, the predicted logistic relationship holds in this case.

Discussion

The analysis of the internal structure of models can be extremely useful. In one partic-
ularly impressive case, an analysis of the geometry of neural network state spaces (see
Amari, Park, & Fukumizu, 2000) demonstrated that ‘plateaus’ in the learning process,
not unusual in connectionist models, often arise because the standard backpropagation
learning rule actually distorts the state space, creating ‘singularities’ that slow down the
learning in particular regions. Since it is unlikely that these singularities have any genuine
psychological equivalent, it is important to be aware of this structural problem. In gen-
eral, identifying pathologies of this kind are important for the advancement of modeling
practice. To the extent that the paper by Smith (2006) raises awareness of these issues
as they pertain to categorization models, it performs a valuable function.

However, when analyzing the behavior of a model, it is important to avoid painting a
misleading picture. In the case of similarity-choice models for categorization, the function
relating distance to category membership is not linear. Rather, under those conditions in

More importantly, in approximately 93% of the random splits, cross-validation prefers the logistic model.
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Figure 6: Response probabilities versus average distance discrepancy for each of 5 participants in exper-
iment 1 of McKinley and Nosofsky (1995), condition 1. The 5 empirical functions (dotted lines) were
constructed by binning the raw stimuli (see main text for details), with error bars representing 95%
confidence intervals for each bin. The two solid lines show the best fitting linear and logistic models: the
linear function explains 93.6% of the variance, while the logistic function explains 99.0% of the variance.

which category similarity is approximately exponentially related to an appropriate cate-
gory distance measure, the typical form of the predicted relationship is logistic. Obviously,
not all domains are able to discriminate between the logistic function and a linear one,
a fact that Smith’s (2006) simulations illustrate. This should not, however, be taken as
evidence that the general form of the relationship is linear: there are some domains (and
corresponding empirical data sets) that can and do show that the functions are curvi-
linear (e.g., McKinley & Nosofsky, 1995), and well-approximated by a logistic equation.
More generally, however, it would be equally incorrect to assume that the relationship
is invariably logistic. The derivation of a logistic relationship relies on the assumption
that category distance and category similarity do not strongly dissociate. When they do,
as is often the case when an average distance measure is applied to highly overlapping
categories, the relationship can become extremely pathological, and it would be a mistake
to apply any function of category distance.

As a final remark, it is worth noting that it would be odd not to get some kind of
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sigmoidal relationship when the categories are ‘well-behaved’. For instance, it is generally
accepted that logistic models are statistically superior to linear models for the analy-
sis and interpretation of categorical data (Hosmer & Lemeshow, 2000), so to the extent
that human categorization can be regarded as a rational solution of a statistical problem
(e.g., Ashby & Alfonso-Reese, 1995), we should expect to see a performance profile of
this form. At a more empirical level, there are strong constraints implied by the psy-
chophysics literature. Consider the special case where people are given one item from
each class, and these two items x1 and x2 differ only on a single perceptual dimension
(e.g., length). Each item would be considered to be the sole representative of (or stan-
dard for) two perceptually-based category responses. In our hypothetical experiment, we
would then present people with a third item x3 that lies somewhere between the two
and ask participants to decide whether it should be classified with the first or the second
item. In essence, we would be asking people to judge whether the perceptual difference
|x3 − x1| is greater than or less than the perceptual difference |x3 − x2|. When phrased
in these terms, it is clear that this task is very similar to psychophysical experiments for
measuring discrimination thresholds via a ‘two-alternative forced choice’ method (e.g.,
Woodsworth & Schlosberg, 1954, ch. 20). While there are a number of technical issues
regarding how to estimate the psychometric functions that emerge from this kind of pro-
cedure (e.g., Wichmann & Hill, 2001) and some questions over their precise shape, few
would disagree with the assertion that psychometric functions are generally nonlinear,
and approximately sigmoidal. If similarity-choice models predicted a linear endorsement
function for a ‘psychophysics-style’ experiment, they would not be taken seriously as mod-
els for human behavior. Fortunately, it is trivial to show that in this case, where only a
single instance of each category is known, the relationship siA = e−λδiA holds exactly, so
the function is logistic irrespective of whether an exemplar model or a prototype model
is used.

Acknowledgments

This research was supported by an Australian Research Fellowship (ARC grant DP-
0773794). I thank Yves Rosseel for providing the data used in this paper, as well as
Nancy Briggs, Anna Ma-Wyatt, and the reviewers and action editor for helpful com-
ments. Correspondence concerning this article should be addressed to Daniel Navarro,
School of Psychology, University of Adelaide, SA 5005, Australia. Tel.: +61 8 8303 5265,
Fax.: +61 8 8303 3770, E-mail: daniel.navarro@adelaide.edu.au

References

Amari, S.-I., Park, H., & Fukumizu, K. (2000). Adaptive method of realizing natural gradient
learning for multilayer perceptrons. Neural Computation, 12, 1399-1409.

Ashby, F. G., & Alfonso-Reese, L. A. (1995). Categorization as probability density estimation.
Journal of Mathematical Psychology, 39, 216-233.



Similarity, Distance and Categorization 15

Balasubramanian, V. (1997). Statistical inference, Occam’s razor, and statistical mechanics on
the space of probability distributions. Neural Computation, 9, 349-368.

Browne, M. W. (2000). Cross-validation methods. Journal of Mathematical Psychology, 44,
108-132.

Goodman, N. (1972). Seven strictures on similarity. In N. Goodman (Ed.), Problems and
Projects. New York: The Bobbs-Merrill Co.

Hosmer, D. W., & Lemeshow, S. (2000). Applied Logistic Regression. New York, NY: Wiley.
Lee, M. D., & Webb, M. R. (2005). Modeling individual differences in cognition. Psychonomic

Bulletin and Review, 12, 605-621.
Luce, R. D. (1959). Individual Choice Behavior. New York, NY: Wiley.
Luce, R. D. (1977). The choice axiom after twenty years. Journal of Mathematical Psychology,

15, 215-233.
McKinley, S. C., & Nosofsky, R. M. (1995). Investigations of exemplar and decision-bound

models in large, ill-defined category structures. Journal of Experimental Psychology: Human
Perception and Performance, 21, 128–148.

Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological
Review, 85, 207-238.

Myung, I. J. (2000). The importance of complexity in model selection. Journal of Mathematical
Psychology, 44, 190-204.

Myung, I. J., Kim, C., & Pitt, M. A. (2000). Toward an explanation of the power-law artifact:
Insights from response surface analysis. Memory and Cognition, 28, 832-840.

Myung, I. J., & Pitt, M. A. (1997). Applying Occam’s razor in modeling cognition: A Bayesian
approach. Psychonomic Bulletin and Review, 4 (1), 79-95.

Navarro, D. J. (2005). Analyzing the RULEX model of category learning. Journal of Mathe-
matical Psychology, 49, 259-275.

Navarro, D. J. (2007). On the interaction between exemplar-based concepts and a response
scaling process. Journal of Mathematical Psychology, 51, 85-98.

Navarro, D. J., Griffiths, T. L., Steyvers, M., & Lee, M. D. (2006). Modeling individual
differences using Dirichlet processes. Journal of Mathematical Psychology, 50, 101-122.

Navarro, D. J., Pitt, M. A., & Myung, I. J. (2004). Assessing the distinguishability of models
and the informativeness of data. Cognitive Psychology, 49, 47-84.

Nosofsky, R. M. (1984). Choice, similarity and the context theory of classification. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 10 (1), 104-114.

Pitt, M. A., Kim, W., Navarro, D. J., & Myung, J. I. (2006). Global model analysis by parameter
space partitioning. Psychological Review, 113, 57-83.

Pitt, M. A., Myung, I. J., & Zhang, S. (2002). Toward a method of selecting among computa-
tional models of cognition. Psychological Review, 109 (3), 472-491.

Roberts, S., & Pashler, H. (2000). How persuasive is a good fit? A comment on theory testing.
Psychological Review, 107 (2), 358-367.

Rosch, E. (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.), Cognition and
Categorization (p. 27-77). Hillsdale, NJ: Erlbaum.

Shepard, R. N. (1980). Multidimensional scaling, tree-fitting, and clustering. Science, 210,
390-398.



Similarity, Distance and Categorization 16

Shepard, R. N. (1987). Towards a universal law of generalization for psychological science.
Science, 237, 1317-1323.

Smith, J. D. (2006). When parameters collide: A warning about categorization models. Psy-
chonomic Bulletin and Review, 13, 743-751.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of
the Royal Statistical Society, Series B, 39, 44–47.

Thompson, A. C. (1996). Minkowski Geometry. Cambridge, UK: Cambridge University Press.
Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327-352.
Wichmann, F. A., & Hill, N. J. (2001). The psychometric function: I. fitting, sampling and

goodness of fit. Perception and Psychophysics, 63, 1293-1313.
Woodsworth, R. S., & Schlosberg, H. (1954). Experimental Psychology (3rd ed). London, UK:

Methuen.

Appendix

In this appendix I present a somewhat more precise discussion of the logistic approxima-
tion. The main text implicitly assumes an unweighted city-block metric for measuring
inter-stimulus distances, not unreasonably since stimulus dimensions are assumed to be
separable, and this metric is a special case of both the Minkowski metrics (see Thompson,
1996, ch. 1) that are typically used with continuous dimensions, and Tversky’s (1977)
contrast model that is more often applied for binary features. This is useful since it is
one of the few cases where geometric models and featural models make the same assump-
tions about distance and dissimilarity. Accordingly, the assumption of an unweighted
city-block metric will be retained for the following derivation, though very few elements
of the derivation rely on it, and it would not be too difficult to repeat the exercise for
different distance measures. For clarity of expression, in what follows j will always index
a category exemplar and k will always index a dimension, so the summation notation will
be shortened to

∑
j and

∑
k. I will also switch to the exp(·) notation for exponentiation.

Taking Shepard’s (1987) generalization law as a primitive, the construction of category
similarities follows the following rule for a prototype model:

siA = exp (−λdiĀ) , (6)

where diĀ denotes the distance from the prototype to the TBCI, which for the unweighted
city-block metric is simply,

diĀ =
∑

k

∣∣∣(1/nA)
(∑

j
xjk

)
− xik

∣∣∣

= (1/nA)
∑

k

∣∣∣∑
j
xjk − xik

∣∣∣ . (7)

For an exemplar model, the expression is somewhat different:

siA =
∑

j

sij =
∑

j

exp (−λdij) . (8)
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Recall that the average distance measure δiA can be expressed as

δiA = (1/nA)
∑

j

dij . (9)

At this point we can begin a somewhat more careful construction of the logistic approx-
imation. For both exemplar and prototype models, the starting point is to rewrite the
category similarity function siA in a more tractable form. For a prototype model,

siA = exp (−λ [δiA − δiA + diĀ])

= exp (−λδiA − qiA) , (10)

where we define
qiA = λ [diĀ − δiA] . (11)

The exemplar model can be rewritten in much the same way, but in this case the expression
is given by

siA = exp


−λδiA +


ln

∑

j

exp (−λdij)


 + λδiA




= exp (−λδiA − qiA) , (12)

where qiA in this case becomes:

qiA = −


ln

∑

j

exp (−λdij)


 − λδiA. (13)

Note that the term in the square brackets here is simply the logarithm of the cate-
gory similarity (i.e., ln siA), where the category similarity is written as a function of the
inter-stimulus distances rather than the more typical expression based on inter-stimulus
similarities. This way of writing things is to be preferred, since the goal is to discuss
the direct relationship between distances and category endorsement. In any case, observe
that qiA = − ln siA − λδiA for both the prototype and exemplar models, representing the
extent to which category similarity and category distance dissociate.

The reason for rewriting both models in this fashion is to allow the category endorse-
ment P (i ∈ A) to be expressed as a function of the distances δiA and δiB, as well as qiA

and qiB:

P (i ∈ A) =
siA

siA + siB

=
exp (−λδiA − qiA)

exp (−λδiA − qiA) + exp (−λδiB − qiB)

=
1

1 + exp (−λ [δiB − δiA]− [qiB − qiA])
. (14)
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We arrive at the logistic approximation by assuming that qiB − qiA ≈ 0. There are a
number of special cases for which the approximation holds. The obvious one, discussed
in the main text, is when siA ≈ exp(−λδiA) (for both categories), since this implies that
qiA ≈ 0 and qiB ≈ 0, and therefore qiB − qiA ≈ 0.

More generally, it is relatively straightforward to derive an informative expression for
the error associated with the approximation. To do so, we define u = exp(−λ[δiB−δiA]/2)
and v = exp(−[qiB − qiA]/2). If we let P ∗(i ∈ A) denote the approximated endorsement
level, then the error of approximation is given by,

P (i ∈ A)− P ∗(i ∈ A) =
1

1 + u2v2
− 1

1 + u2

=
u

u2 + 1

u2 + 1

u

[
1

1 + u2v2
− 1

1 + u2

]

=
u

u2 + 1

[
uv2 − u

u2v2 + 1

]

=
u

u2 + 1

[
v − v−1

uv + u−1v−1

]
. (15)

Writing the error in this form is useful, since

u

u2 + 1
=

1√
u2 + 1

u√
u2 + 1

=

√
1

u2 + 1

u2

u2 + 1

=

√
1

u2 + 1

[
1 − 1

u2 + 1

]

=
√

P ∗(i ∈ A)[1− P ∗(i ∈ A)]. (16)

This expression takes its maximum value of 0.5 when P ∗(i ∈ A) = 1 − P ∗(i ∈ A) = 0.5,
and diminishes quickly as P ∗(i ∈ A) → 0 or P ∗(i ∈ A) → 1. This term acts to reduce
the error at either end of the curve, though this will not necessarily be successful in
pathological cases. However, throughout this paper I have focused mainly on categories
that are at least partially separable, in the sense that the category with the leftmost mean
(in the unidimensional case) has at least one exemplar that is substantially further to the
left than any of the exemplars from the opposing category (and the reverse is true for the
rightmost category). By imposing this constraint, both the true function and the logistic
approximation will usually (but not always, especially if λ is very small) involve cases
where P ∗(i ∈ A) → 0 or P ∗(i ∈ A) → 1. When this constraint is removed, larger errors
are observed.

Turning to the second term in the expression, we see that the other major determinant
of error is the extent to which distance and similarity dissociate, since
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v − v−1

uv + u−1v−1
=

exp(−[qiB − qiA]/2) − exp([qiB − qiA]/2)

exp(−λ[(δiB − δiA) + (qiB − qiA)]/2) + exp(λ[(δiB − δiA) + (qiB − qiA)]/2)
.

(17)

It is this term that describes how the approximation breaks down when the category
distance becomes a poorer approximation to the log similarities. As |qiB − qiA| becomes
large, so too does this term. Although it would presumably be possible to further analyze
this term, and find deeper descriptions of those characteristics that lead to violations of
the logistic approximation, any such analysis is beyond the scope of this paper.


