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NOTE: This is a draft, made available to allow reviewers for the corresponding Cog-
nitive Science conference paper to have access to the inference scheme for purposes of
the review. While the algorithm is accurately described, the note is being rewritten
to improve clarity. A final version will be made public shortly.

Introduction

I describe a method for calculating the predictions made by a generative Bayesian
model that describes human categories in terms of an infinite number of kinds
(Navarro, submitted). For ease of exposition, the development will be limited to
stimuli that can be represented in a separable metric space, but the analysis can be
extended to more general representational structures in a straightforward fashion.
Consequential regions are assumed to be hyper-rectangular in shape. Since space
is separable, the extension of the region along different dimensions is chosen inde-
pendently, in order to produce a city block distance metric. A category is assumed
to entail a countably infinite number of consequences, only some finite number of
which will be relevant to the learning task at hand. The model can be written:

xij | mkj , skj , ri = k ∼ Uniform(mkj , skj)
ri | wc, zi = c ∼ Discrete(wc)

skj | λj , ξ ∼ Gamma(ξ, λj)
mkj | µj , τj ∼ Normal(µ, 1/τ)
wc | α ∼ Stick(α)
λj | β1, β2 ∼ Gamma(β1, β2)
µj | µ0, τ0, τj ∼ Normal(µ0, 1/τjτ0)
τj | φ1, φ2 ∼ Gamma(φ1, φ2)
zi | ζ ∼ Discrete(ζ)
ζ | η ∼ Dirichlet(η)

In these expressions, i indexes a stimulus, j indexes a dimension, k indexes a region,
and c indexes a category. This model is described in detail by Navarro (submitted),
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Figure 1: Graphical representation of the Bayesian categorization model. Shaded circles
denote observed variables, white rounded circles refer to fixed values, and white circles
indicate latent, unobserved variables. Arrows indicate dependencies between variables, while
plates enclose a set of independent replications. In this figure, n is the number of stimuli, v is
the number of categories, and d is the number of dimensions. Since this paper is concerned
with supervised learning, the category variables z are shaded. Naturally, it is only the
previous category labels that are observed, not a novel one.

and illustrated graphically in Figure 1. In general, most of the “parameter” values
are fixed a priori. I treat the Gamma hyper-priors as standard exponentials, so β1,
β2, φ1 and φ2 are all fixed at 1. I set a diffuse prior over the location parameters,
with µ0 = 0 and τ0 = .001. Unless there is a reason for people to have an a priori bias
for one category over another, the prior over ζ is uniform, so I fix η = 1. The only
psychologically important values are ξ and α, which should be treated as genuine
parameters.

Structure of the Inference Algorithm

On trial t in a supervised category learning experiment, people are shown a v-
dimensional stimulus xt = (xt1, . . . , xtv), and asked to predict the corresponding
category label zt. Feedback is provided, so the category labels for earlier trials
z−t = (z1, . . .zt−1) are available to the learner (hence the shading in the graph-
ical model). Inference takes place by finding p(zt|z−t, x, θ), the conditional dis-
tribution for the category label, given the preceding experimental history. The
parameter vector in this model consists of the variables describing the prior θ =
(ξ, α, β1, β2, φ1, φ2, µ0, τ0, η). The model has a number of latent, hidden variables
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h = (r, s, m, ζ, w, τ, µ, λ) that need to be integrated out in order to calculate
p(zt|z−t, x, θ). However, this integral is intractable so we turn to approximate infer-
ence methods. Our approach is firstly to rewrite p(zt|z−t, x, θ) as a marginalization
over the joint posterior distribution over the collection of variables zt, r, s, m:

p(zt|z−t, x, θ) =
∫

p(zt, r, s, m|z−t, x, θ) d(r, s, m)

Written in this form, it will be straightforward to develop numerical methods for
approximating the category membership probability. Given a large enough set of L
samples z`

t , r
`, m`, s` such that,

z`
t , r

`, m`, s` ∼ p(zt, r, s, m|z−t, x, θ)

we may adopt the approximation:

p(zt|z−t, x, θ) ≈ 1
L

L∑

`=1

δ(zt − z`
t).

where δ(·) is an indicator function that takes on value 1 when the argument is 0,
and is 0 otherwise. Therefore, the category assignment probabilities may be found
by drawing samples from the joint posterior p(zt, r, s, m|z−t, x, θ) integrating out
the values of ζ, w, τ , µ and λ in the process. I now discuss a Markov chain Monte
Carlo method (e.g., Gilks, Richardson & Spiegelhalter, 1995) for sampling z`

t , r`,
m`, and s` from the joint posterior distribution.

The basic approach is a combination of Gibbs and Metropolis-Hastings sam-
pling, in which we repeatedly cycle through each of the variables, resampling them
from their conditional posterior distribution given the sampled values for all the
other variables (i.e., Gibbs sampling). However, when the conditional posterior is
intractable, we substitute a Metropolis-Hastings scheme that leaves the stationary
distribution invariant. The relevant conditional posteriors are

mkj | x, z, s, m−kj, r, θ

skj | x, z, s−kj, m, r, θ
ri | x, z, s, m, r−i, θ, i 6= t

rt, zt | x, z−t, s, m, r−t, θ, i = t

As before, i indexes a stimulus, j indexes a dimension and k indexes a region. When
t = 1, all variables are initialized randomly, and then the sampler is run until the
the values of zt, r, s and m converge to samples from the joint posterior. After
the sampler converges, the values of these variables are recorded to produce the
draws for z`

t , r`, m`, and s`, with a sufficient lag between successive draws to
minimize the correlation between these draws. For subsequent trials (i.e., t > 1)
the same procedure is adopted, but the initial values are set by copying the state
of the sampler from the previous trial, assigning values to new variables randomly.
This allows faster convergence for subsequent trials. In what follows, I describe
procedures for drawing from the conditional distributions.
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Resampling Means

In the first part of the sampler, we sample the mean mkj along dimension j for region
k from its conditional posterior p(mkj |x, z, s, m−kj, r, θ). If the region memberships
r and sizes s are all known along with all the category memberships z, and mkj is
the only unknown location variable, then by applying Bayes’ theorem and dropping
variables that do not affect the relevant probabilities, we obtain:

p(mkj |x, z, s, m−kj, r, θ)
∝ p(xk |x−k, z, s, m, r,θ) p(mkj |x−k, z, s, m−kj, r, θ)
= p(xk |mk, sk) p(mkj |m−kj , µ0, τ0, φ1, φ2),

where xk denotes the set of stimuli that are currently assigned to region k, and
x−k refers to the remaining stimuli. This expression applies equally to all regions,
irrespective of the category of which they form a part. Since every point inside
region is equally likely, the likelihood term is given by

p(xk |mk, sk) =
∏

i∈k

p(xi |mk, sk),

where the sum is taken over all the stimuli that are assigned to region k, and

p(xi |mk, sk) =

{ ∏
j skj

−1 if xi ∈ rk

0 otherwise
.

In this expression, xi ∈ rk is true if and only if xi falls inside the part of the space
corresponding to region rk. The second term in the expression for the conditional
posterior is a little more complex, since

p(mkj |m−kj , µ0, τ0, φ1, φ2)

=
∫

p(mkj |µj , τj) p(µj , τj |m−kj , µ0, τ0, φ1, φ2) d(µj , τj).

Since the normal-gamma prior over µj and τj is conjugate to the normal distribution
for locations that they describe, the posterior distribution p(µj , τj |m−kj , µ0, τ0, φ1, φ2)
is also normal-gamma, with updated parameters.

µj | µ0, τ0, τj, m−kj ∼ Normal(µn, 1/τjτn)
τj | φ1, φ2, m−kj ∼ Gamma(φ1n, φ2n)

The updated parameters are given as follows. Firstly, we define

m̄ = nm
−1
∑

q 6=k

mjq

to be the average value of all previously observed location parameters on dimension
j, and note that since the parameters µj and τj are shared by all categories, this
sum is taken over the location parameters for regions that belong to all categories,
and nm denotes the number of terms in this sum. Along the same lines, define

s2 = (n − 1)−1
∑

q 6=k

(mjq − m̄)2
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to be the sample variance of these terms. Then if we let ν0 = 2φ1, and σ2
0 = (φ1φ2)−1,

the updated parameters are described by defining

τn = τ0 + nm

νn = ν0 + nm

µn = (τ0µ0 + nmm̄)/τn

σ2
n = (ν0σ

2
0 + (nmτ0/τn)(m̄− µ0)2 + (nm − 1)s2)/νn

Given these expressions, the updated parameters are φ1n = νn/2 and φ2n = 1/(φ1nσ2
n).

The posterior predictive distribution p(mkj |m−kj , θ) is found by marginalizing out
the posterior distribution. After a scale and location shift, the predictive distribution
follows a Student’s t distribution with νn degrees of freedom:

mkj |m−kj , µ0, τ0, φ1, φ2 ∼
√

(τn + 1)σ2
n/τn Student(νn) + µn.

This gives us an expression for p(mkj |m−kj , µ0, τ0, φ1, φ2), which after a little alge-
bra reduces to,

p(mkj |m−kj , µ0, τ0, φ1, φ2) =
Γ
(
φ1n + 1

2

)

√
2πφ1nΓ (φ1n)

(
1 +

τn (mk − µn)2

2φ1nσ2
n(τn + 1)

)−φ1n− 1
2

Since we now have expressions for p(xk |mk, sk) and p(mkj |m−kj , µ0, τ0, φ1, φ2), we
can now propose a posterior sampling scheme for mkj . Although there are a great
many Metropolis-Hastings possibilities, it is straightforward to construct a pseudo-
Gibbs sampler by developing a sufficiently-accurate numerical approximation to the
conditional posterior. Since this distribution for mkj is univariate and the proba-
bilities are easily calculated (up to the normalizing constant), a simple approach is
to break the continuous distribution into a large number of discrete intervals and
assume the posterior likelihood is constant over an interval. An interval is sampled
from the discrete distribution, and then a point in the interval randomly sampled.

Resampling Sizes

The second part of the sampler involves drawing from the conditional posterior over
the size variables, p(skj |x, z, s−kj, m, r, θ). As before, we apply Bayes’ theorem and
drop irrelevant variables:

p(skj |x, z, s−kj, m, r, θ)
∝ p(xk |x−k, z, s, m, r, θ) p(skj |x−k, z, s−kj , m, r, θ)
= p(xk |mk, sk) p(skj | s−kj , β1, β2, ξ).

The likelihood function remains the same as described for the location variables.
The second term involves integrating over λj , and is given

p(skj | s−kj , β1, β2, ξ) =
∫

p(skj |λj , ξ) p(λj|s−kj , β1, β2) dλj

As before, note that s−kj includes size variables for all categories, since observations
from all categories can influence the posterior distribution over λj . The integral
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can be solved by noting that the gamma prior on λj is conjugate to the gamma
likelihood on skj . This implies that the posterior distribution also follows a gamma
distribution, with updated parameters β1n = β1 + nsξ and β2n = β2 +

∑
q 6=k sqj ,

and where ns = nm, discussed in the last section. The posterior distribution can be
written,

λj | β1, β2, s−kj ∼ Gamma(β1n, β2n).

The resulting probability for skj is found by marginalizing over this posterior, which
gives

p(skj | s−kj , β1, β2, ξ) =
Γ(ξ + β1n)
Γ(ξ)Γ(β1n)

β2n
β1nst

ξ−1

(β2n + st)β1n+ξ
.

In this case, we adopt a Metropolis sampler with a normal distribution for the
proposal, centred on the existing value and with a fixed variance of 0.1. A new
candidate value s∗kj is sampled from this distribution, and is accepted if a standard
uniform random variate u on [0, 1] is less than

p(xk|mk, s
∗
k)

p(xk|mk, sk)
p(s∗kj | s−kj , θ)
p(skj | s−kj , θ)

where s∗k has the same values as sk for all dimensions except the jth.

Resampling Regions When the Category is Known

In the third part of the sampler, we look to sample the region assignment for the
ith stimulus. For the moment, we assume that i 6= t, so the value of zi is known
to the learner, and is not a latent variable. Since the observations are exchange-
able, we may treat the ith observation as if it were the last, and sample from
the distribution p(ri|r−i, m, s, x,z, θ). For convenience, I introduce the notation
mi = (mi1, . . . , miv) in this section, to refer to the center of the region to which the
ith stimulus belongs. Strictly, this should be written mri , but this simplifies matters
and no confusion is introduced. The same applies to the size of the region, si. By
applying Bayes’ theorem and simplifying, we see that

p(ri|r−i, m, s, x, z,θ)
∝ p(xi|r, m, s, x−i, z, θ) p(ri|r−i, m, s, x−i, z, θ)
= p(xi |mi, si) p(ri | r(zi)

−i , zi, α),

where r
(zi)
−i refers to the collection of regions to which the other members of category

zi are assigned. Now consider each of these terms in turn. The prior probability
term is given by integrating out the stick-breaking weights w,

p(ri | r(zi)
−i , zi, α) =

∫
p(ri|w)p(w | r(zi)

−i , zi, α)dw

=
∫

wi p(w|r(zi)
−i , zi, α) dw

6



The marginal distribution for a stick-breaking prior with discrete likelihood is called
a Chinese restaurant process (CRP: see Navarro, Griffiths, Steyvers & Lee, in press,
for a simple discussion). We can write the conditional CRP probability very simply:

p(ri = k | r(zi)
−i , zi, α) =

{
nk

nz+α if k ∈ r
(zi)
−i

α
nz+α otherwise

where nk denotes the number of items currently assigned to region k, and nz denotes
the total number of items (in category z). Strictly, α/(α + nz) is the probability of
sampling a hitherto unseen consequence, not the probability of any specific member
of the set of unseen consequences.

Turning to the likelihood, p(xi |mi, si), if ri ∈ r
(zi)
−i we can use the uniform

likelihood function described earlier. In the case where the item is assigned to an
entirely new region (i.e., when ri /∈ r

(zi)
−i ), mi and si are random samples from the

“base distribution” over possible regions. The likelihood of xi given that mi and si

are random samples from the base distribution is given by:

p(xi | ri /∈ R+) =
∫

p(xi |mi, si) p(mi |m−i, θ) p(si | s−i, θ) d(mi, si)

This integral is intractable for the current model, but we can address this by a data
augmentation technique in which values for mi and si are actually sampled from the
base distribution. However, rather than sampling a single value to deal with this
integral, we adopt the more efficient auxiliary variable approach for non-conjugate
priors proposed by by Neal (2000: algorithm 8), in which multiple values are sampled
at every stage. If we sample g auxiliary variables, the probability that ri comes
from the base distribution is evenly spread across g samples. Thus, each variable is
assigned probability α/(g(nz + α)). In the current implementation, the samples are
drawn by first sampling values for λj , τj and µj from their conditional posteriors
distributions (discussed earlier), and then sampling the locations and sizes from the
distributions described by λj , τj and µj . The values of λj , τj and µj are discarded
as soon as the assignment ri is made, as are the g auxiliary regions, unless of course
the stimulus is assigned to the region. Note that if the region to which xi had
previously been assigned was a singleton (i.e., if xi was the only stimulus assigned
to the region), then one of the auxiliary regions must correspond to the region to
which xi had been previously assigned. See Neal (2000) for details regarding this
sampler.

Resampling Regions When the Category is Unknown

Extending the sampler to the case when the category assignment zt is unknown is
straightforward1. In this situation, it is most convenient to sample zt and rt from

1In supervised learning tasks, this case only arises for the current stimulus, but in unsupervised
or semi-supervised tasks it can apply for other items. However, because the current model provides
a single set of parameters µ, τ and λ shared by all categories, it is unlikely to constitute a good
model for unsupervised tasks: as noted by Navarro (submitted), stronger priors for within-category
homogeneity and between-category heterogeneity are probably required.
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their joint posterior,

p(rt, zt|r−t, m, s, x,z−t, θ)
∝ p(xt|r, m, s, x−t, z, θ) p(rt, zt|r−t, m, s, x−t, z−t, θ)
= p(xt |mt, st) p(rt, zt | r−t, z−t, α, η),

The likelihood term remains the same as in the previous section, and may be dealt
with using the auxiliary variable approach suggested by Neal (2000). The joint prior
over the region and category is simple,

p(rt, zt | r−t, z−t, α, η) = p(rt | r(zt)
−t , zt, α)p(zt | z−t, η)

The prior over the region assignment follows the same CRP probability described in
the last section. Since we have a symmetric Dirichlet(η) prior on the category base
rates ζ, it is simple to observe that

p(zt = q | z−t, η) =
nq + η

n + vη

where nq denotes the number of previously observed stimuli that belonged to cate-
gory q, and n is the total number of stimuli observed so far excluding the item t, so
n = t − 1. These expressions are sufficient to produce a sampler for (zt, rt).
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