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Abstract

The additive clustering approach to modeling pairwise simi-
larity of entities is a powerful tool for deriving featural stimulus
representations. In a recent paper, Lee (2001) proposes a statisti-
cally principled measure for choosing between clustering models
that accounts for model complexity as well as data Þt. Impor-
tantly, complexity is understood to be a property, not merely of
the number of clusters, but also their size and pattern of overlap.
However, some caution is required when interpreting the mea-
sure, with regard to the applicability of the Hadamard inequality
to the complexity matrix.

∗Correspondence concerning this article should be addressed to: Daniel Navarro, Department of Psy-
chology, Ohio State University, 1827 Neil Avenue Mall, Columbus OH 43210. Telephone: (614) 688-4071,
Facsimile: (614) 292-5601, E-mail: navarro.20@osu.edu

1



Featural Complexity 2

Additive clustering (Shepard & Arabie, 1979) represents a simple and
effective method for modeling the similarity between a set of n stimuli.
Clustering algorithms that Þt the additive clustering model input a matrix
of pairwise similarities S = [sij] and derive a stimulus representation in
the form of a set of m saliency-weighted clusters (sometimes interpreted
as features). Formally, the model consists of an n £ m feature matrix
F = [fik] where fik is 1 if the i-th stimulus possesses the k-th feature, and
0 if it does not, as well as a vector of nonnegative saliency weightsw = [wk].
An additive clustering representation estimates the similarity between two
stimuli by the sum of the weights of shared features: that is to say, �sij =P
k wkfikfjk. It is common practice to include a nonnegative �additive
constant�, added to all similarity estimates, which can be regarded as a
mandatory extra cluster encompassing all stimuli.
An important theoretical issue in additive clustering regards how to

choose between featural representations. In a recent paper, Lee (2001)
proposes a measure that approximates the Bayesian posterior probability
by employing an established variant on Laplace�s method (see Kass &
Raftery, 1995). This measure provides a trade off between goodness-of-
Þt and model complexity, and importantly, the measure of complexity is
sensitive to the interaction between clusters, as well as to their number.
The key component of this measure is the determinant of the complexity
matrix G = [gxy], them£m matrix such that gxy = gyx = P

i<j fixfjxfiyfjy.
In other words, the xy-th element ofG counts the number of pairs of stimuli
that share the x-th feature and the y-th feature. Main diagonal elements
of G are given by the number of pairs of stimuli that share a single feature:
that is, gxx reduces to

P
i<j fixfjx. Correspondingly, a row (or column) in

G reßects both the size of a cluster and the extent of its overlap with other
clusters. This complexity matrix has broad applicability, also appearing
in expressions for the Stochastic Complexity (Rissanen, 1996; see also Lee,
2002) and the related Geometric Complexity (Myung, Balasubramanian,
& Pitt, 2000) for additive clustering representations.
Lee demonstrates that for non-degenerate feature structures, G is posi-

tive deÞnite, and applies Hadamard�s inequality (Bellman, 1970, pp. 129-
130), which states that the determinant of G is less than or equal to the
product of its main diagonal,
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jGj · Y
x

X
i<j

fixfjx

with equality occurring when all off-diagonal elements are zero. From
this observation Lee argues that, for a Þxed number of clusters, the most
complex representation is a partition, in which every stimulus belongs to
precisely one cluster, since these models have diagonal complexity matrices.
However, it should be observed that although all partitions have diagonal
complexity matrices, not all diagonal complexity matrices correspond to
partitions. A diagonal complexity matrix results whenever no two stimuli
ever share two or more features. Therefore, so long as each pair of clusters
has no more than a single stimulus in common, G remains diagonal.
A concrete example of this is illustrated by Figure 1, in which feature

structures A and B yield precisely the same (diagonal) complexity matrix.
All features have 3 stimuli and hence (32) = 3 stimulus pairs, and no two
features are shared by any two stimuli, even though only feature set A is a
partition. This concern notwithstanding, when the clusters share pairs of
stimuli without changing size, as in feature structure C, the determinant of
the complexity matrix decreases in accordance with Hadamard�s inequal-
ity: jGj for structures A and B is 27, whereas jGj for structure C equals
21. If the additive constant is included, the determinant of the expanded
matrix G+ is 729 for A and B, and 621 for C. In general, the more that a
pair of clusters overlap (in terms of stimulus pairs) the less complexity is
introduced, since each cluster makes a smaller unique contribution to jGj.
The second caveat that attaches to Lee�s discussion is that Hadamard�s

inequality applies only if the product of the main diagonal elements re-
mains constant: that is, when the number of stimuli (and hence pairs of
stimuli) in each cluster remains constant. Hadamard�s inequality does not
indicate what happens to the model�s complexity as the number of stimuli
in a cluster changes. Therefore, although Lee identiÞes encompassment and
overlap as sources of model complexity, arguments based on Hadamard�s
inequality only take overlap into account. In some situations, these two
factors can be varied independently: for example, a stimulus that does
not belong to any cluster can be added to one of them without causing
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(A) (B) (C) (D) (E)

G =
3  0  0
0  3  0
0  0  3

G =
3  0  0
0  3  0
0  0  3

G =
3  1  0
1  3  1
0  1  3

G =
3  1  1
1  3  1
1  1  6

G =
28  21  21
21  28  21
21  21  28

G+ =
3   0   0   3
0   3   0   3
0   0   3   3
3   3   3  36

G+ =
3   0   0   3
0   3   0   3
0   0   3   3
3   3   3  36

G+ =
3   1   0   3
1   3   1   3
0   1   3   3
3   3   3  36

G+ =
3   1   1   3
1   3   1   3
1   1   6   6
3   3   6  36

G+ =
28  21  21  28
21  28  21  28
21  21  28  28
28  28  28  36

Figure 1: Five feature structures for a nine-stimulus domain. Feature set A has a partit-
ioning structure, whereas B is an example of a non-partitioning structure that also has
a diagonal complexity matrix. In set C, each cluster still encompasses three stimuli, but
some overlap emerges. Feature structure D introduces a small amount of overlap at the
expense of increasing the size of one cluster, whereas the features in E are large and overlap
extensively. Two complexity matrices are given for each: G is the complexity matrix for
the features shown, whereas G+ incorporates the additive constant. The xy-th element
of a complexity matrix is obtained by counting the number of stimulus pairs common to
the x-th and y-th clusters.

any change in the off-diagonal elements of G. Similarly, the comparison
between feature structures A and C in Figure 1 involves manipulating the
overlap between clusters without changing their size. Nevertheless, such
independence is hardly the norm, and it is not immediately obvious what
happens to complexity when a feature is enlarged at the expense of intro-
ducing more overlap. Consider feature structures A, D and E in Figure 1.
Two of the features in A and D are identical, but the third feature in D
contains four stimuli rather than three, and shares one stimulus pair with
each of the other two features. As it turns out, D is the more complex rep-
resentation, with jGj = 44 and jG+j = 1224 (compared to 27 and 729 for
A). Feature structure E involves larger clusters and more overlap, as there
are 8 stimuli in each cluster and 7 stimuli shared between all pairs of clus-
ters, yielding jGj = 3430. Once the additive constant is introduced, it is no
longer possible to have larger features or more overlap without including
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the same feature twice (which is degenerate), and jG+j for this representa-
tion is 8232. In this example at least, representations with smaller clusters
are simpler than those with larger clusters, even though it comes at the
expense of reduced overlap.
It is also worthwhile to note that, for a Þxed number of clusters the

simplest representation is one consisting only of clusters containing two
stimuli. The complexity matrix for this representation is the identity, and
therefore has determinant 1. Since G is positive deÞnite, its determinant
must be positive, and since the elements of G are integers, no complexity
matrix can ever have a determinant smaller than 1. This argument does
not incorporate the additive constant, but it is heartening to note that a
representation of nine stimuli using three two-stimulus clusters has jG+j =
33, making it simpler than any of those displayed in Figure 1.
To summarize, the solid statistical foundation of Lee�s (2001) approxi-

mation to the Bayesian posterior lends it considerable status as a selection
criterion for additive clustering models. The determinant of the complexity
matrix G is a function of the size and overlap of features in the representa-
tion, but caution is required when applying Hadamard�s inequality, which
only takes overlap into account: in the examples presented here, represen-
tations with smaller clusters and less overlap were simpler than those with
larger clusters but more overlap.
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