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Abstract

Smith and Minda (1998, 2002) argued that the response scaling parameter γ in

the exemplar-based generalized context model (GCM) makes the model unnecessarily

complex, and allows it to mimic the behavior of a prototype model. We evaluated

this criticism in two ways. First, we estimated the complexity of GCM with and

without the γ parameter, and also compared it to that of a prototype model. Next,

we assessed the extent to which the models mimic each other using two experimental

designs (Smith & Minda,1998, Experiment 2; Nosofsky & Zaki, 2002, Experiment 3),

chosen because they are thought to differ in the degree to which they can discriminate

the models. The results show that γ can increase the complexity of GCM, but this

complexity does not necessarily allow mimicry. Furthermore, if statistical model

selection methods such as Minimum Description Length are adopted as the measure

of model performance, the models are highly discriminable irrespective of design.



Response scaling 3

Introduction

How do humans learn to categorize objects (e.g., dogs) that vary along multiple dimensions

(e.g., size, shape, color, texture) into psychologically equivalent categories? This question has

attracted a great deal of interest in cognitive science and led to diverse conceptualizations of

the cognitive processes underlying category formation and structure. In prototype theories,

humans are assumed to extract commonalities across instances of a class and encode these

generalizations in memory (Reed, 1972; Smith & Minda, 1998). In exemplar theories, on the

other hand, humans encode each instance of the class that is encountered, thereby preserving

much of the detail present in the input (Medin & Schaffer, 1978; Nosofsky, 1986).

Given such different theories, and the fact that quantitative models of each type have been

put forth, one might think that decisive evidence favoring one position should have been gener-

ated long ago, but in recent years the debate in this field has actually increased in intensity. One

reason for this stems from disagreement about the proper quantitative formulation of the ex-

emplar model, for which there are two versions. There is the original generalized context model

(GCM; Nosofsky, 1986) and an elaborated version we refer to as GCMg (Ashby & Maddox, 1993;

McKinley & Nosofsky, 1995), which includes an additional, response-scaling parameter γ.1

Smith and Minda (1998, 2002) expressed severe reservations about γ, questioning its validity

and arguing that it makes GCMg so adept at fitting behavioral data that it becomes a “proto-

type in exemplar clothing” (Smith & Minda, 1998, p. 1413). They supported this claim with

simulation data showing that GCMg can mimic an additive prototype model quite well. These

researchers were sufficiently wary of the additional data-fitting power that γ adds to GCM that

in subsequent studies (Minda & Smith, 2001, 2002) they compared multiple prototype models

(PRT, additive and multiplicative versions2; see Minda and Smith, 2001) with only the original
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GCM, to ensure the models were equated in their numbers of parameters.

Nosofsky and colleagues (Nosofsky & Zaki, 2002; Zaki, Nosofsky, Stanton, & Cohen, 2003)

defended the introduction of the response scaling parameter, noting, among other reasons, that

it is necessary to capture the deterministic behavior that participants exhibit early in learning,

when they tend to focus on a single dimension of a stimulus. Probably most convincing in

countering the claims of Smith and Minda are the results of two simulations in which it was

shown that data generated by PRT are fitted better by PRT than by GCMg. If GCMg were in

fact equivalent to PRT, then its fits should always be comparable to PRT’s.

Although illustrative, the preceding evidence needs to be pursued to draw strong conclusions

about whether the response scaling parameter does or does not cause GCMg to mimic PRT.

What is needed is an understanding of just how data-fitting performance changes when γ is

added to GCM, in particular with respect to PRT. In this paper, we use statistical model

selection methods to provide this understanding. Analyses are performed that not only quantify

the extent to which the data-fitting abilities of GCM increase when γ is added, but importantly,

whether this increase is in fact due to GCMg’s ability to mimic PRT. We begin by reviewing

the models and describing the quantitative methods used to analyze them. This is followed

by the applications of these methods in two experimental designs, chosen for their abilities to

discriminate the two models.

Categorization Models

For the three models, the probability of deciding that the ith stimulus Si belongs to category A,

P (A|Si) is given by a multinomial probability that is proportional to the similarity of stimulus

Si to category A. For exemplar models, the category similarity is found by summing over
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individual stimulus similarities, whereas for prototype models a single idealized stimulus SA is

used. To calculate stimulus similarities it is assumed that each stimulus is mentally represented

as a point located in an m-dimensional Minkowski space, and the similarity between any two

stimuli is assumed to decrease exponentially with the distance between them. Therefore, the

similarity sij between the ith and jth stimuli is given by,

sij = exp


−λ

(
T∑

t=1

wt|xit − xjt|r
) 1

r


 (1)

where xit is the co-ordinate value of Si along dimension t. In this equation, wt denotes the

proportion of attention applied to the tth dimension (
∑T

t=1 wt = 1), r determines the distance

metric that applies in the space, and λ denotes the steepness of the exponential decay (called

the specificity parameter).

One methodological issue to keep in mind is that categorization models can vary across

papers, making comparisons difficult. However, because one of our goals was to evaluate the

effects of design differences on model discriminability, we held models constant across designs.

This was done in two ways. First, the metric parameter r was fixed to 1 (i.e., city-block distance)

for all three models, because the stimulus dimensions are assumed to be perceptually separable

(Garner, 1974). Second, a guessing parameter q (0 < q < 1) was introduced to each model. The

role of this parameter is to assume that, with probability q, a participant chooses a category

at random. With these changes, the probability that the observed stimulus Si belongs to the

category A is defined as

PRT : P (A|Si, θ) =
q

2
+ (1− q)

(
siA

/∑

C

siC

)

GCM : P (A|Si, θ) =
q

2
+ (1− q)


∑

x∈A

six

/∑

C

∑

y∈C

siy


 (2)
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GCMg : P (A|Si, θ) =
q

2
+ (1− q)




(∑

x∈A

six

)γ /∑

C


∑

y∈C

siy




γ 


where the sum over C is taken over all relevant categories, γ is the response scaling parameter

and θ represents the set of model parameters, θ = (w1, . . . , wT−1, λ, q) for PRT and GCM and

θ = (w1, . . . , wT−1, λ, γ, q) for GCMg.3

Measuring Model Complexity and Discriminability

Quantitative models are evaluated based on their fit to data, with a superior fit generally inter-

preted as an indication that the model is a closer approximation to the underlying categorization

process. The problem with such a conclusion is that a good fit can be achieved for other rea-

sons, such as extra parameters, which in essence provides additional flexibility (more degrees

of freedom) to improve fit. This is exactly the concern Smith and Minda (1998) raised about

GCMg; γ made the model so flexible it could fit a wide range of data patterns, including those

fit well by PRT. In the fields of statistics and computer science, this property of a model is

termed complexity, and refers to the inherent ability of a model to fit data.

Statistical model selection methods have been developed that penalize models for extra com-

plexity, thereby placing them on an equal footing. The most sophisticated of these is Minimum

Description Length (MDL; Rissanen, 1996 & 2001; Pitt, Myung & Zhang, 2002). It is defined

below, and is composed of two main parts.4 The first is a goodness-of-fit measure, in this case

the log maximum likelihood (LML), ln f(x|θ∗), where θ∗ represents the parameters that max-

imize the probability f(x|θ) that the model assigns to the observed data x. The second is a

complexity measure, denoted by G, that takes into account the number of parameters through

k (N is the sample size), and the functional form of the model equation through the Fisher

information matrix, I(θ). (See the Appendix for details on calculating these quantities as well
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as a brief explanation of why complexity is measured on an interval scale.)

MDL = − LML + G (3)

LML = ln f(x|θ∗) (4)

G =
k

2
ln

(
N

2π

)
+ ln

∫

Θ

√
det I(θ) dθ (5)

Note that the measures of fit and complexity in MDL are additive, and thus can be computed

separately, providing a straightforward means of answering questions concerning γ. By compar-

ing the complexities of the three models, we can learn how much the response scaling parameter

increases the flexibility of GCM, and how much more complex GCMg may be when compared

to PRT.

Model mimicry is a slightly different question from model complexity. In this case, the con-

cern is that if GCMg mimics PRT well, then the two models should be difficult to discriminate.

We can evaluate whether this is the case by performing a model recovery test, in which two

models first generate large samples of data.5 These same two models are then fitted to every

data set, generally using a measure such as LML, though more sophisticated methods like MDL

can also be used. If the two models are discriminable, then the model that generated the data

should fit its own data better than the competing model. If GCMg mimics PRT, GCMg should

not only fit its own data better than PRT, but it should fit data generated by PRT better

than PRT itself. Nosofsky and Zaki (2002; Zaki et al, 2003) showed this was not the case,

demonstrating that there are conditions in which GCMg does not mimic PRT.

We performed a set of model recovery tests to determine how discriminable the two models

are. In doing so, we varied the statistical method used to recover the models in order to show

that the use of advanced model selection methods can greatly improve model discriminability.
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In these evaluations, LML was compared with MDL and another selection method, Akaike

Information Criterion (AIC; Akaike, 1973), whose complexity term takes into account only the

number of parameters (k),6

AIC = − 2 · LML + 2k (6)

Additionally, we varied the sample size to illustrate how discriminability improves as the sample

size increases. However, the effectiveness of any change in sample size or statistical method

depends on the experimental design. If the design is poor, only marginal gains in discriminability

might be obtainable via either method. In contrast, the proper design can be so decisive in favor

of one model that there is little need for fancy statistical selection methods or large samples.

The results from a comprehensive set of recovery tests can therefore speak to the quality of an

experimental design as well.

Complexity and Discriminability of Categorization Models

The contribution of γ to model complexity and the ability of GCMg to mimic PRT were eval-

uated using two experimental designs that Nosofsky and Zaki (2002) argued differ in model

discriminability, namely those used by Smith and Minda (1998; Experiment 2) and Nosofsky

and Zaki (2002; Experiment 3). Both are traditional category learning experiments in which

participants were trained to classify objects into one of two categories, with learning being eval-

uated across or after training. The difference between the designs is that whereas Smith and

Minda examined categorization performance using the same set of stimuli on which they were

trained, Nosofsky and Zaki made a key change that was intended to further differentiate the

models; they had participants classify additional, never-before-seen objects in subsequent test

phase, for which the models make very different classification predictions. If the Nosofsky and
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Zaki design is indeed more powerful, MDL should provide little additional information beyond

what can be learned using common measures of fit (e.g., LML). Should this be the case, the

design is doing most of the work, making fancy statistical machinery redundant. Changes in

experimental design can alter model complexity dramatically, but the consequences of this for

model selection are not easily predictable because, as will be seen, complexity does not vary in

a uniform or constant way, but again, depends on design.

Analysis of the Smith and Minda (1998) Design

In Experiment 2 of Smith and Minda (1998), participants were presented with 14 six-letter (i.e,

T = 6) nonsense words like “gafuzi”, and learned to categorize seven as belonging to one category

and seven to another. The experiment included two conditions, one using linearly-separable

category stimuli and the other using non-linearly separable ones; for the sake of simplicity,

however, only stimuli of the latter category structure were adopted in the present analyses.

Smith and Minda used a standard block-sampling technique, with category feedback provided.

They analyzed the data in 10 blocks of 56 trials each with four repeats of each of 14 stimuli,

examining each block separately for evidence favoring GCM or PRT. Accordingly, the sample

size in Equation 5 would be N = 56, which is obtained as the number of category stimuli

(m = 14) times the binomial sample size (n = 4).

We preface the discussion of the results by noting that model complexity is measured on an

interval scale. For the present discussion, the most important implications of this are that there

is no absolute zero point (i.e., complexity can take on negative values) and ratios of complexity

differences are meaningfully interpretable, but ratios of complexities are not (Stevens, 1946;

Roberts, 1979). In calculating complexity, we assumed 0 < q < 1, 0 < λ < 20, and 0 < γ < 10;
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the same range of values used by Smith and Minda (1998). Note that both PRT and GCM

have seven free parameters consisting of five attention weights (wt’s), one specificity parameter

(c), and one guessing parameter (q), whereas GCMg has eight free parameters, including the

additional response scaling parameter (γ). The model complexities for PRT, GCM and GCMg

are G = −0.986, 0.184, and 0.305, respectively, for sample size N = 56.

To interpret these values properly, they must be adjusted for the number of parameters k

and the functional form of the model. For example, for k = 1 and N = 56, the first term

in Equation 5 comes to 1
2 ln

(
56
2π

)
= 1.09. Thus we can think of each additional parameter as

contributing an increase in complexity by this amount.7 Viewed in this light, the difference

of 0.305 - 0.184 = 0.12 in complexity between GCMg and GCM indicates that adding the

response-scaling parameter γ only slightly increases the complexity of GCM, by 11% of what is

expected purely due to the difference in number of parameters between the two (0.12/1.09 =

0.11). Turning to the comparison between GCM and PRT, we note that there is a complexity

difference of 1.17 despite the fact that both have the same number of parameters. Obviously,

this is due to differences in functional form, which makes GCM more complex than PRT by

almost one ”effective” parameter (1.17/1.09 = 1.07). Similarly, the difference of 0.305 - (-0.986)

= 1.29 between GCMg and PRT implies that GCMg is more complex than PRT by about one

”effective” parameter (1.29/1.09 = 1.18). GCMg is therefore more capable of fitting arbitrary

data sets than PRT, so caution is required when comparing fits.

When considering model mimicry, however, it is important to recognize that GCMg’s extra

complexity does not necessarily imply that GCMg can mimic PRT. To assess mimicry, we

performed a set of model recovery tests. We sampled 3,000 data sets from each model and

fit both PRT and GCMg to all data sets for three binomial sample sizes of n = 4, 20, 100
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(equivalently, N = 56, 280, 1400) using LML, AIC, and MDL.8 The results are shown in Table

1. When LML was used as the selection method, PRT provided the better fit to its own data

43 - 57% of the time, with higher recovery rates observed for larger sample sizes, as should be

the case. Data from GCMg were almost always fit better by GCMg, rarely by PRT. The use of

more powerful selection methods shows that the poor recovery rate when the model was PRT is

due to the imbalance of complexity in favor of GCMg. Model discriminability improves greatly

when AIC is used (83 - 89%) and even more so when MDL is used (88 - 99%), because of its

additional correction for functional form differences.

A more precise understanding of the discriminability of the two models, one that also makes

the merits of the various selection methods easier to evaluate, is to compare the magnitudes

by which one model (e.g., PRT) fitted a data set better than the other (e.g., GCMg). To

perform this analysis, the difference in LML fits (LMLPRT − LMLGCMg) is calculated for the

data generated by PRT.9 The same is done for the data generated by GCMg, creating two

distributions of fit difference scores. These scores are plotted in the top graph of Figure 1, with

the GCMg distribution specified by triangles, and the PRT distribution specified by crosses.

When PRT fits the data better than GCMg, LMLPRT −LMLGCMg > 0, the data fall to the

right of the dotted line (0), which denotes the LML-based decision criterion. Negative values

indicate a better fit by GCMg. Unfortunately, only about half of the PRT distribution (43%)

falls to the right of the dotted line, implying that GCMg provides superior fits more often

than PRT does to its own data. For the GCMg data, not surprisingly GCMg almost always

(97%) fits the data better than does the simpler PRT model. Looking at the two distributions

together, there is an asymmetry in the extent to which they overlap that hints of the mimicry

that concerned Smith and Minda: GCMg extends across most of the PRT distribution, but the
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reverse is not true.

Despite these concerns, one can see that there is an optimal decision point for discriminating

the models that lies where the distributions intersect (at the abscissa of approximately -2). By

correcting for differences in complexity, the decision boundaries for AIC and MDL approach this

ideal location. However, the fact that the distributions overlap means that no selection method

will perform perfectly, which is also reflected in the errors in Table 1. In short, GCMg and PRT

are in fact reasonably discriminable in the Smith and Minda (1998, Experiment 2) design, but

only if a selection method that controls for complexity is used. Otherwise one runs a real risk

of favoring the overly complex model, particularly when only small (i.e., realistic) samples are

available.

Analysis of the Nosofsky and Zaki (2002) Design

As in Smith and Minda (1998), Experiment 3 of Nosofsky and Zaki’s (2002) used 14 six-

dimensional objects for training, but they were cartoon bugs instead of nonsense words. The

critical design change was that in the test phase, participants had to classify all 64 possible stim-

uli (m =64), not just the 14 training items. The number of test blocks (i.e., binomial sample

size) was again four (n = 4).

We estimated the complexities of the three models to be G = 17.26, 11.06, and 44.56, for

PRT, GCM, and GCMg, respectively (sample size N = nm = 256). These values are much

larger than those calculated for the Smith and Minda (1998) design, even though the models

are exactly the same in both experiments. One cause of this increase in complexity is due to

the contribution from the sample size in the design. Because there were 64 category stimuli in

the present design, the sample size N in Equation 5 is much greater than that for the Smith
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and Minda (1998) design (N = 256 vs 56), thereby increasing the value of the first term in

Equation 5. Another cause for the complexity increase comes from the second, functional-form

term of the complexity measure, which can also make a substantial contribution to complexity

through the Fisher information matrix I(θ). These differences clearly illustrate the profound

effect experimental design can have on model complexity. It is tempting to think of model

complexity as being constant, but as these data show, it is not static but depends on many

factors, an important one of which is experimental design (see Pitt et al, 2002).

The overall effects of the contributions of functional form and number of parameters to model

complexity greatly increases the complexity of GCMg relative to GCM and PRT. In fact, the

introduction of the response scaling parameter to GCM is now equivalent to adding about 31

“effective” parameters! ((44.56 - 11.06)/1.09 = 30.7). Similarly, GCMg is substantially more

complex than PRT, specifically by about 25 “effective” parameters ((57.44 - 17.06)/1.09 = 25.0).

An experimental design that forces models to harness their computational power to fit data well

exposes the extent to which γ can contribute to model performance. However, it is another

question entirely whether this increased complexity causes GCMg to mimic PRT to such an

extent that the two are indiscriminable. The set of model recovery tests was performed next to

answer this question.

The model recovery data are displayed in Table 2. The results using LML indicate that

PRT provided the better fit to its own data 66%, 86%, 93% of the time for binomial sample size

n = 4, 20, 100, respectively. GCMg perfectly recovered its own data across all sample sizes. With

AIC recovery improved noticeably, and with MDL it was virtually perfect. Without a doubt,

the models are highly discriminable in this experimental design. Comparison of the recovery

results across Tables 1 and 2 shows the models to be more discriminable in the Nosofsky and
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Zaki design, as these authors argued.

This improved discriminability is visible in the bottom graph of Figure 1, where the LML

differences for the PRT and GCMg data are plotted. The distributions do not even come close

to overlapping, clearly showing that the two models are entirely discriminable. Absolutely no

mimicry is occurring. If this is the case, why were PRT data not fully recovered in some of

the model recovery tests? The locations of the decision boundaries reveal why. For LML, it is

located well inside the PRT distribution. Selection errors will be made when the fit difference

is to the left of the boundary. Although selection improves with AIC, it is still prone to errors.

Its close proximity to the LML criterion is due to the fact that the number of parameters

contributed comparatively little to model complexity in this design. Only when functional form

effects are neutralized using MDL is a more appropriate criterion found, although here too, one

might wonder whether the location of the criterion is too far to the left. The optimal location

for it would appear to be in the region between distributions, not within the GCMg distribution.

As the pattern of model recovery data for MDL shows in Tables 1 and 2, the accuracy of MDL

increases with sample size. In Figure 1, this translates into placing the criterion in a location

that improves discrimination. With a binomial sample size of n=4, some imprecision is to be

expected.

Conclusion

The model complexity calculations and the model recovery results across two experimental

designs provide a clear and thorough understanding of how the response-scaling parameter γ

affects GCM performance. Adding response scaling to the model does increase its complexity,

not just by the addition of an extra degree of freedom for the model, but also by changing the way
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in which those degrees of freedom may be harnessed. In some contexts, such as the experimental

design used by Nosofsky and Zaki (2002), the increase in model complexity is enormous. This

increase in complexity allows GCMg to provide good fits to PRT data, as illustrated by the fact

that the PRT distributions in Figure 1 have a sizable amount of their mass to the left of the

zero line. As a consequence, simple measures of fit such as LML perform poorly irrespective of

the experimental design. However, the extent to which GCMg can mimic PRT is only partial:

the GCMg and PRT distributions in Figure 1 are quite distinct, particularly in the Nosofsky

and Zaki design. Accordingly, when we switch to statistical methods such as MDL that correct

for the source of the problem, namely model complexity, the apparent mimicry vanishes.

Additionally, the results of the two analyses show that the relationship between model com-

plexity and model discriminability is not simple. Intuitively, an increase in complexity, which

means an increase in data-fitting ability, should lead to greater mimicry. The current simula-

tions show this is not the case. If it were, the two models should be less discriminable in the

Nosofsky and Zaki design than in the Smith and Minda design (since the complexity differences

are larger in this design), when in fact the opposite is true.

How can complexity and discriminability increase together? The answer lies in considering

the relationship of the models to one another and to the data. An increase in complexity is

unlikely to generate an improvement in data-fitting precision across the range of all possible

data patterns, but rather be localized to only a few patterns. In fact, a decrease in model

discriminability will be found only in those cases where the additional complexity increases the

model’s (e.g., GCMg’s) ability to produce patterns that the competing model (PRT) fits well.

This could be a very small region of the space of all possible data patterns. As for the increase

in discriminability, GCMg and PRT are highly discriminable in the Nosofsky and Zaki design
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precisely because the data are fit exceptionally well only by GCMg. In other words, the data

pattern is one that GCMg can generate but not PRT.

An increase in model complexity does not guarantee an increase in model mimicry. In fact,

additional complexity could be just what is needed to discriminate models, but only if it further

differentiates their predictions. If it does nothing more than improve fit to data that do not

discriminate between models, then the additional complexity is unjustified.

Finally, this study shows that statistical model selection methods can compensate for weak-

nesses in experimental design. To the extent that a highly informative experimental design can

be found, the less need there is for model selection methods like MDL. In these situations, the

differences in LML fit between models will be so large that even though substantial differences

in complexity may exist between them, the contribution of complexity to the MDL value will

be insignificant. When the design is weaker, reliance on MDL will be greater. In both cases,

statistical model selection methods should always be used as supplementary tools in decision

making, and never the sole arbiter when evaluating competing models.
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Appendix

Likelihood function

The likelihood function f(x|θ) given the data set x = (xA1, xA2, ..., xAm) in a two-category

decision experiment, C ∈ {A,B}, is given by

f(x|θ) =
m∏

i=1

n!
xAi! (n− xAi)!

P (A|Si, θ)xAi (1− P (A|Si, θ))(n−xAi)

In this equation, m is the number of test stimuli, n is the binomial sample size or number of

independent binary trials, xAi = {0, 1, ..., n}, i = 1, ..., m, is the observed number of category A

decisions out of n trials for the ith stimulus Si, and finally P (A|Si, θ) denotes the categorization

probability defined in Equation 2.

Fisher information

The Fisher information matrix of sample size one (N = 1), I(θ), is the expected value of the

second partial derivatives of the negative log-likelihood of sample size one (e.g., Rissanen, 1996,

eq. 7; Schervish 1995, pp. 110-115)

Iuv(θ) = − 1
nm

E

[
∂2 ln f(x|θ)

∂θu∂θv

]
, (u, v = 1, ..., k) (7)

where θu and θv correspond to the uth and vth elements of the model parameter vector θ =

(θ1, θ2, ..., θk). Since PRT, GCM and GCMg are all multinomial, a standard result (Su, Myung

& Pitt, 2005) can be used to obtain the uvth element of the Fisher information matrix.

Calculation of the complexity measure

Calculating the complexity measure G in Equation 5 for the categorization models is reasonably

simple in principle, if slightly tedious in practice. Calculating the second term of the complexity,
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involving the integrated Fisher information, is a simple task so long as we are able to find

I(θ) for a given θ value. Once I(θ) can be calculated, all that is needed is the integration

√
det I(θ) over the parameter range Θ. For the categorization models, these integrals are not

very high-dimensional, so simple Monte Carlo methods suffice. That is, we use the numerical

approximation,
∫

Θ

√
det I(θ) dθ ≈ 1

T

(
T∑

i=1

√
det I

(
θ(i)

)
)
× VΘ,

where VΘ denotes the volume of the parameter space, and the θ(i) values are T (=10,000, e.g.)

independent samples from a uniform distribution over Θ.

The measurement scale of the complexity measure

The complexity measure G in Equation 5 is an interval scale of measurement. To understand

why, consider that the complexity measure is obtained as an asymptotic approximation to the

logarithm of the normalizing “constant” in the Normalized Maximum Likelihood (NML) selec-

tion criterion (Rissanen, 2001):

ln
∫

f(y|θ∗)dy ≈ k

2
ln

(
N

2π

)
+ ln

∫

Θ

√
det I(θ)

for large N . The integration on the left-hand side of the equation is carried out over all possible

data patterns one could observe in an experiment. Thus the integral
∫

f(y|θ∗)dy represents the

sum of all best fits a model can provide collectively, and the logarithm of this sum defines model

complexity (see Myung, Navarro & Pitt [2006] for a review of NML).

Given that the maximum likelihood f(y|θ∗) is a ratio-scale measurement, the integrated

“volume” of maximum likelihoods,
∫

f(y|θ∗)dy, is a ratio scale as well. The logarithm of ratio-

scale measurements satisfies the two key properties of the interval scale: rank order and equality

of intervals (Stevens, 1946; Roberts, 1979). Consequently, the complexity measure G, which is
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essentially equal to the logarithm of the integrated volume, is also on an interval scale. Further-

more, we note that the log maximum likelihood (LML) is an interval-scale measure as well and

that it is directly additive with G, as shown in Equation 3.
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Footnotes

1 Navarro (in press) provides an in-depth discussion of the response-scaling parameter including

three theoretical interpretations one can attach to it: at the decision level, category similarity

level, and representational structure level.

2 Only the multiplicative prototype model is evaluated in this paper. We refer to it as PRT.

3 The results of this investigation do not change qualitatively if the parameter q is omitted.

Conclusions drawn from this study, however, may not be generalizable to hybrid models, such

as the mixed prototype model of Smith and Minda (1998).

4 There are several formulations of MDL. We used Rissanen’s (1996) asymptotic approxima-

tion to the optimal “normalized maximum likelihood” method because it met our needs best.

See Myung, Navarro and Pitt (2006) for a simple introduction.

5 Sampling a data set x from a model is generally easy if the parameter values θ are known,

since it reduces to sampling from f(x|θ). The difficult part is choosing a distribution π(θ) from

which to sample the parameters. In this application, we used a Metropolis-Hastings algorithm

(e.g. Gilks, Richardson & Spiegelhalter 1995) to sample θ from Jeffreys “non-informative”

distribution π(θ) ∝ √
det I(θ), which assigns equal prior probability to every distinguishable

probability distribution (Balasubramanian 1997).

6 Besides AIC and MDL, there are many statistical selection methods one can use for the

same purpose, such as cross-validation, Bayesian information criterion, and Bayes factor, to

name a few. Olsson, Wennerholm and Lyxzèn (2004) recently used cross-validation to compare

prototype and exemplar models. For in-depth discussion of various selection methods, see two

special issues of the Journal of Mathematical Psychology on model selection (Myung, Forster &

Browne, 2000; Wagenmakers & Waldorp, 2006).
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7 This interpretation of the first term of model complexity in Equation 5 obviously requires

that the sample size N be greater than 2π = 6.28. Otherwise, adding each parameter will

cause a decrease in complexity, which is nonsensical. Fortunately, this is not a problem in the

present investigation. Because all three categorization models have at least seven parameters,

the sample size N must be greater than seven in order to make the models identifiable.

8 Recall from Equation 5 that the first term of model complexity is a logarithmic function

of sample size (N) whereas the second term is independent of N . As such, once the complexity

of a model (e.g, GN1) is known for a particular sample size (e.g., N1), the model’s complexity

for any other sample size, say N2, is fully determined as GN2 = GN1 + k
2 ln

(
N2
N1

)
, where k is the

number of model parameters.

9 This method of analyzing the whole distribution of LML differences obtained in a model

recovery test is called the “landscaping” technique (Wagenmakers, Ratcliff, Gomez & Iverson,

2004; Navarro, Pitt & Myung, 2004).
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Table 1. Model recovery rates of two categorization models under three selection methods for
Smith and Minda (1998) experimental design. The value on each cell represents the percentage of
samples in which the particular model was selected under the given selection method. Simulated
data were generated by sampling across the entire parameter space according to Jeffreys prior.
This way, 3,000 parameter values were sampled for each model and binomial sample size.

Binomial sample size (n) 4 20 100

Data from PRT GCMg PRT GCMg PRT GCMg

Selection method Model fitted

LML PRT 43 3 45 1 57 1

GCMg 57 97 56 99 43 99

AIC PRT 83 10 86 3 89 1

GCMg 17 90 14 97 11 99

MDL PRT 88 12 96 4 99 2

GCMg 12 88 4 96 1 98
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Table 2. Model recovery rates of two categorization models under three selection methods for
Nosofsky and Zaki (2002) experimental design. The value on each cell represents the percentage
of samples in which the particular model was selected under the given selection method. Simu-
lated data were generated by sampling across the entire parameter space according to Jeffreys
prior. This way, 3,000 parameter values were sampled for each model and binomial sample size.

Binomial sample size (n) 4 20 100

Data from PRT GCMg PRT GCMg PRT GCMg

Selection method Model fitted

LML PRT 66 0 86 0 93 0

GCMg 34 100 14 100 7 100

AIC PRT 87 0 95 0 98 0

GCMg 13 100 5 100 2 100

MDL PRT 100 1 100 0 100 0

GCMg 0 99 0 100 0 100
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Figure 1: The inherent discriminability of PRT and GCMg. The top panel shows distributions
of log maximum likelihood (LML) differences in fit the two models provide for simulated data
generated from each model using the Smith and Minda (1998) design, and the bottom panel
shows similar distributions obtained using the Nosofsky and Zaki (2002) design. The binomial
sample size n = 4 was used to obtain all four distributions, which were estimated by a kernel-
smoothing method.


