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Abstract

Fisher information essentially describes the amount of information data provide about an un-
known parameter. It has applications in finding the variance of an estimator, as well as in the
asymptotic behavior of maximum likelihood estimates, and in Bayesian inference.
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Fisher information is a key concept in the theory of statistical inference [4,7] and essentially describes
the amount of information data provide about an unknown parameter. It has applications in finding
the variance of an estimator, as well as in the asymptotic behavior of maximum likelihood estimates,
and in Bayesian inference. To define Fisher information, let X = (X1, ...,Xn) be a random sample,
and let f(X|θ) denote the probability density function for some model of the data, which has
parameter vector θ = (θ1, . . . θk). Then the Fisher information matrix In(θ) of sample size n is
given by the k × k symmetric matrix whose ij-th element is given by the covariance between first
partial deriviatives of the log-likelihood,

In(θ)i,j = Cov

[
∂ ln f(X|θ)

∂θi
,
∂ ln f(X|θ)

∂θj

]
. (1)

An alternative, but equivalent, definition for the Fisher information matrix is based on the expected
values of the second partial derivatives, and is given by

In(θ)i,j = −E
[
∂2 ln f(X|θ)

∂θi∂θj

]
. (2)

Strictly, this definition corresponds to the expected Fisher information. If no expectation is taken
we obtain a data-dependent quantity that is called the observed Fisher information. As a simple
example, consider a normal distribution with mean µ and variance σ2, where θ = (µ, σ2). The
Fisher information matrix for this situation is given by In(θ) =

( n
σ2 0

0 n
2σ4

)
.

It is worth noting two useful properties of the Fisher information matrix. Firstly, In(θ) =
nI1(θ), meaning that the expected Fisher information for a sample of n independent observations
is equivalent to n times the Fisher information for a single observation. Secondly, it is dependent
on the choice of parameterization, that is, how the parameters of a model are combined in the
model’s equation to define the probability density function. If the parameters are changed into new
parameters by describing the latter as a function of the former, then the information matrix of the
revised parameters can be found analytically from the information matrix of the old parameters
and the function that transforms the old parameters to the new ones [6].
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The Cramer-Rao Inequality. Perhaps the most important application of the Fisher in-
formation matrix in statistics is in determining an absolute lower bound for the variance of an
arbitrary unbiased estimator. Let T (X) be any statistic and let ψ(θ) be its expectation such that
ψ(θ) = E[T (X)]. Under some regularity conditions, it follows that for all θ,

Var (T (X)) ≥
(
dψ(θ)
dθ

)2

In(θ)
. (3)

This is called the Cramer-Rao inequality or the information inequality, and the value of the right
hand side of (3) is known as the famous Cramer-Rao lower bound [5]. In particular, if T (X)
is an unbiased estimator for θ, then the numerator becomes 1, and the lower bound is simply
1/In(θ). Note that this explains why In(θ) is called the “information” matrix: The larger the the
value of In(θ) is, the smaller the variance becomes, and therefore, we would be more certain about
the location of the unknown parameter value. It is straightforward to generalize the Cramer-Rao
inequality to the multi-parameter case [6].

Asymptotic Theory. The maximum likelihood estimator has many useful properties, in-
cluding reparametrization-invariance, consistency, and sufficiency. Another remarkable property
of the estimator is that it achieves the Cramer-Rao minimum variance asymptotically. That is,
it follows under some regularity conditions that the sampling distribution of a maximum likeli-
hood estimator θ̂ML is asymptotically unbiased and also asymptotically normal with its variance-
covariance matrix obtained from the inverse Fisher information matrix of sample size 1, that is,
θ̂ML → N(θ, I1(θ)−1/n) as n goes to infinity.

Bayesian Statistics. Fisher information also arises in Bayesian inference. The informa-
tion matrix is used to define a noninformative prior that generalizes the notion of “uniform”
but also is equipped with some desirable properties. This is called Jeffreys’ prior [3] defined as
π

J
(θ) ∝ √|I1(θ)| where |I1(θ)| is the determinant of the information matrix. This prior can be

useful for three reasons. First, it is reparametrization-invariant so the same prior is obtained under
all reparameterizations [3]. Second, Jeffreys’ prior is a uniform density on the space of probability
distributions in the sense that it assigns equal mass to each “different” distribution [1]. In com-
parison, the uniform prior defined as π

U
(θ) = c for some constant c assigns equal mass to each

different value of the parameter and is not reparametrization-invariant. Third, Jeffrey’s prior is
the one that maximizes the amount of information about θ, in the Kullback-Leibler sense, that the
data are expected to provide [2].
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