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Clustering is one of the most basic and useful methods of data analysis. This
chapter describes a number of powerful clustering models, developed in psychology,
for representing objects using data that measure the similarities between pairs of
objects. These models place few restrictions on how objects are assigned to clusters,
and allow for very general measures of the similarities between objects and clusters.
Geometric Complexity Criteria (GCC) are derived for these models, and are used
to fit the models to similarity data in a way that balances goodness-of-fit with
complexity. Complexity analyses, based on the GCC, are presented for the two
most widely used psychological clustering models, known as “additive clustering”
and “additive trees”.
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2.1 Introduction

Clustering is one of the most basic and useful methods of data analysis. It involves
treating groups of objects as if they were the same, and describing how the
groups relate to one another. Clustering summarizes and organizes data, provides
a framework for understanding and interpreting the relationships between objects,
and proposes a simple description of these relationships that has the potential to
generalize to new or different situations. For these reasons, many different clustering
models have been developed and used in fields ranging from computer science and
statistics to marketing and psychology [see Arabie, Hubert, and De Soete 1996;
Everitt 1993; Gordon 1999 for overviews].

Different clustering models can be characterized in terms of the different assump-
tions they make about the representational structure used to define clusters, and the
similarity measures that describe the relationships between objects and clusters.

2.1.1 Representational Assumptions

Representationally, it is possible for different types of constraints to be imposed on
how objects can be grouped into clusters. Three different assumptions are shown
in Figure 2.1:

(a) The partitioning approach forces each object to be assigned to exactly one
cluster. This approach can be interpreted as grouping the objects into equivalence
classes, and essentially just summarizes the objects, without specifying how the
clusters relate to each other. For example, if the objects ‘A’ though ‘H’ in Fig-
ure 2.1(a) correspond to people, the partitioning could be showing which of four
different companies employs each person. The representation does not allow a per-
son to work for more than one company, and does not convey information about
how the companies themselves are related to each other.

(b) The hierarchical approach allows for nested clusters. This can be interpreted
as defining a tree structure, where the objects correspond to terminal nodes. For
example, the hierarchical clustering in Figure 2.1(b) could be showing not just the
company employing each person, but also the division they work for within that
company, and further subdivisions in the organizational structure. Each of these
subdivisions corresponds to a branch in the tree, and the overall topology of the
tree relates objects and clusters to one another.

(c) The overlapping approach imposes no representational restrictions, allowing any
cluster to include any object and any object to belong to any cluster. Overlapping
clustering models can be interpreted as assigning features to objects. For example,
in Figure 2.1(c), the five clusters could correspond to features like the company a
person works for, the division they work in, the football team they support, their
nationality, and so on. It is possible for two people in different companies to support
the same football team, or have the same nationality, or have any other pattern of
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Figure 2.1 Three different representational assumptions for clustering models, showing
(a) partitioning, (b) hierarchical, and (c) overlapping structures, and their interpretation
as (a) equivalence classes, (b) tree structures, and (c) feature assignments.



8 Psychological Clustering Models

shared features.

2.1.2 Similarity Assumptions

A clustering model also makes assumptions about how the similarity between ob-
jects is measured. One possibility, most compatible with partitioning representa-
tions, is to treat all objects in the same cluster as being equally similar to one
another, and entirely different from objects not in that cluster. In hierarchical and
overlapping representations, more detailed measures of similarity are possible. Be-
cause objects may belong to more than one cluster, various similarity measures
can be constructed by considering the clusters objects have in common, and those
that distinguish them, and combining these sources of similarity and dissimilarity
in different ways.

2.1.3 Psychological Clustering Models

In many fields that use clustering models, most applications have relied on a rela-
tively small range of the possible representational and similarity assumptions. Great
emphasis is given to partitioning approaches like k-means clustering, and various
tree-fitting approaches using hierarchical representations. Sometimes (although not
always) this emphasis comes at the expense of overlapping representations, which
have hierarchical and partitioning representations as special cases.

One field, perhaps surprisingly, that has a long tradition of using overlapping
clustering models is psychology. In cognitive psychology, a major use of clustering
models has been to develop accounts of human mental representations. This is
usually done by applying a clustering model to data that describes the empirically
observed similarities between objects, and then interpreting the derived clusters
as the cognitive features used by people to represent the object. At least as early
as Shepard and Arabie [1979, p. 91], it has been understood that “generally, the
discrete psychological properties of objects overlap in arbitrary ways”, and so
representations more general than partitions or hierarchies needed to be used.

Psychological clustering models have also considered a variety of possible similar-
ity processes. In particular, they have drawn a useful distinction between common
and distinctive features [Tversky 1977]. Common features are those that make two
objects with the feature more similar, but do not affect the similarities of objects
that do not have the feature. For example, think of two people with an unusual
characteristic like blue hair. Having this feature in common makes these two people
much more similar to each other than they otherwise would be, but does not af-
fect the similarities between other people being considered who have ‘normal’ hair
colors. Distinctive features, on the other hand, are those that make objects both
having and not having the feature more similar to each other. For example, whether
a person is male or female is a distinctive feature. Knowing two people are male
makes them more similar to each other, knowing two people are female makes them
more similar to each other, and knowing one person is male while the other is fe-
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male makes them less similar to each other. Using common and distinctive features
allows clustering models to deal with two different kind of regularities: common fea-
tures capture the idea of ‘similarity within’, whereas distinctive features captures
the notion of ‘difference between’. In addition, psychological clustering models usu-
ally associate a weight with every cluster, which can be interpreted as measuring
its ‘importance’ or ‘salience’. By combining the weights of common and distinctive
features in various ways, a wide range of similarity assumptions is possible.

A consequence of considering clustering models with great flexibility in both
their representations and similarity measures, however, is that it becomes critical
to control for model complexity. As noted by Shepard and Arabie [1979, p. 98], an
overlapping clustering model that is also able to manipulate the similarity measures
it uses may be able to fit any similarity data perfectly. The possibility of developing
overly-complicated clustering representations, of course, conflicts with the basic
goals of modeling: the achievement of interpretability, explanatory insight, and
the ability to generalize accurately beyond given information. In psychology, it is
particularly important to control the complexity of cluster representations when
they are used in models of cognitive processes like learning, categorization, and
decision-making. Because the world is inherently dynamic, representations of the
environment that are too detailed will become inaccurate over time, and provide a
poor basis for decision-making and action. Rather, to cope with change, cognitive
models need to have the robustness that comes from simplicitly. It is this need for
simple representations that makes psychological clustering models ideal candidates
for Minimum Description Length (MDL) methods.

2.1.4 Overview

This chapter describes the application of modern MDL techniques to a number of
psychological clustering models. The next section provides a formal description of
the clustering models considered, the common and distinctive models of similarity,
and the form of the similarity data from which models are learned. Geometric Com-
plexity Criteria [GCC: Balasubramanian 1997; Myung, Balasubramanian, and Pitt
2000] are then derived for the clustering models. As it turns out, these are equivalent
to Rissanen’s [1996] Fisher Information approximation to the Normalized Maximum
Likelihood. With the GCC measures in place, two established psychological cluster-
ing models, known as “additive clustering” and “additive trees”, are considered in
some detail. Illustrative examples are given, together with analysis and simulation
results that assess the complexity of these models. Finally, two new psychological
clustering models are described that raise different challenges in measuring and
understanding model complexity.
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2.2 Formal Description of Clustering Models

2.2.1 Similarity Data

Psychological clustering models are learned from similarity data, in the form of
a n × n similarity matrix S = [sij ], where sij is the similarity between the ith
and jth of n objects. Usually these data are normalized to lie in the interval
[0, 1], and often the assumption of symmetry is made so that sij = sji for all
i and j pairs. Similarities are usually based on empirical measures of human
performance, including ratings scales, identification tasks, sorting or grouping
procedures, and a range of other experimental methodologies. It is also possible to
generate psychological similarity data theoretically, using quantitative descriptions
of objects. There are, for example, many methods for measuring the semantic
similarity of text documents [e.g., Damashek 1995; Griffiths and Steyvers 2002;
Landauer and Dumais 1997; Lund and Burgess 1996], based on the words (or
sequences of characters or words) they contain. The pairwise similarities between
all of the documents in a corpus could be used as the data for learning a clustering
representation.

However similarity data are generated, a standard assumption [e.g., Lee 2001;
Tenenbaum 1996] is that the similarity between the ith and jth objects comes
from a Gaussian distribution with mean sij , and that the Gaussian distribution for
each pair has common variance σ2. The variance quantifies the inherent precision
of the data, and can be estimated based on an understanding of the process by
which the data were generated. For example, most empirical methods of collecting
similarity data generate repeated measures for the similarity between each pair of
objects, by having more than one person do a task, or having the same person do
a task more than once. Given a set of similarity matrices Sk = [sk

ij ] provided by
k = 1, 2, . . . , K data sources, the variance of the arithmetically averaged similarity
matrix S = 1

K [
∑

k sk
ij ] = [sij ] can be estimated as the average of the sample

variances for each of the pooled cells in the final matrix.

2.2.2 Cluster Structures

A clustering model that uses m clusters for n objects is described by a n×m matrix
F = [fik], where fik = 1 if the ith object is in the kth cluster, and fik = 0 if it
is not. When the clusters are interpreted as features, the vector fi = (fi1, . . . , fim)
gives the featural representation of the ith object. Each cluster has an associated
weight, wk for the kth cluster, which is a positive number. Generally, the cluster
structure F is treated as the model, and the clusters weights w = (w1, . . . , wm) are
treated as model parameters.
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Figure 2.2 An example of an additive clustering representation and its associated
similarity matrix.

2.2.3 Common Features Similarity

The common features similarity model assumes that two objects become more
similar as they share more features in common, and that the extent to which
similarity increases is determined by the weight of each common feature. This
means that the modeled similarity between the ith and jth objects, denoted as
ŝij , is simply the sum of the weights of the common features:

ŝij = c +
∑

k

wkfikfjk. (2.1)

The “additive constant” c in Eq. (2.1) increases the similarity of each pair of objects
by the same amount, and so measures the degree to which all of the objects are
similar to each other. It can be interpreted as the saliency weight of a ‘universal’
cluster containing all objects.

Combining overlapping clusters with common features similarity corresponds to
what is known as the “additive clustering” model in psychology [e.g., Arabie and
Carroll 1980; Chaturvedi and Carroll 1994; Lee 2002a; Mirkin 1987, 1996; Ruml
2001; Shepard 1980; Shepard and Arabie 1979; Tenenbaum 1996]. A simple example
of an additive clustering model, and the similarity matrix on which it is based, is
shown in Figure 2.2. Notice that the sums of the weights of the clusters shared by
each pair of objects corresponds to their similarity in the matrix.

2.2.4 Distinctive Features Similarity

The distinctive features similarity model assumes that two stimuli become more
dissimilar to the extent that one stimulus has a feature that the other does not. As
with the common features approach, the extent to which similarity is decreased by
a distinctive feature is determined by the weight of that feature. This model can
be expressed as:

ŝij = c −
∑

k

wk |fik − fjk | . (2.2)
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Figure 2.3 An example of an additive tree representation and its associated dissimilarity
matrix.

For hierarchical representations, distinctive features similarity corresponds to
what is known as the “additive tree” model in psychology [Corter 1996; Johnson and
Tversky 1984; Sattath and Tversky 1977; Shepard 1980; Tversky and Hutchinson
1986]. These models are usually applied to dissimilarity data, generated by reversing
the scale of similarity measures. A simple example of an additive tree model, and
the dissimilarity matrix on which it is based, is shown in Figure 2.3. The model
has an additive constant of 30 and seven clusters: one for each of the objects ‘A’
to ‘E’, with weights 5, 10, 4, 2, and 10 respectively; one for the pair of objects ‘A’
and ‘B’, with weight 5; and one for the pair of objects ‘C’ and ‘D’, with weight 6.
Each of these clusters corresponds to a node in the tree, and represents a feature
that distinguishes between all of the objects that lie under the different branches
coming from that node. Accordingly, the weights of the clusters can be interpreted
as the length of the edges between nodes. This means that, in Figure 2.3 the length
of the unique path between each pair of objects corresponds to their dissimilarity
in the matrix.

For overlapping representations, distinctive features similarity corresponds to
a discrete version of what is known as the “multidimensional scaling” model in
psychology. Multidimensional scaling models [e.g., Cox and Cox 1994; Shepard 1962;
Kruskal 1964] represent objects as points in a multidimensional space, so that the
distance between the points corresponds to the dissimilarity between the objects.
Discrete multidimensional scaling [e.g., Clouse and Cottrell 1996; Lee 1998; Rohde
2002] restricts the points to binary values, and so most of the distance metrics
commonly used in the continuous version (i.e., Minkowskian metrics) reduce to the
distinctive features model.

2.3 Geometric Complexity of Clustering Models

Traditionally, the complexity of clustering models in psychology has been dealt
with in incomplete or heuristic ways. Most often [e.g., Arabie and Carroll 1980;
Chaturvedi and Carroll 1994; DeSarbo 1982; Shepard and Arabie 1979; Tenenbaum
1996], the approach has been to find cluster structures that maximize a goodness-
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of-fit measure using a fixed number of clusters. More recently [Lee 2001, 2002b],
the Bayesian Information Criterion [Schwarz 1978] has been applied, so that the
number of clusters does not need to be pre-determined, but the appropriate number
can be found according to the goodness-of-fit achieved and the precision of the data.
Both of these approaches, however, have the weakness of equating model complexity
with only the number of clusters.

In general, both the representational and similarity assumptions made by a clus-
tering model contribute to its complexity. Moving from partitions to hierarchies to
overlapping clusters leads to progressively more complicated models, able to explain
a progressively larger range of data. Controlling for this complexity requires more
than counting the number of clusters, and needs to be sensitive to measures like the
number of objects in the clusters, and the patterns of overlap or nesting between
clusters. Different similarity assumptions control how the weight parameters inter-
act, and so also affect model complexity. In addition, the complexities associated
with representational and similarity assumptions will generally not be independent
of one another, but will interact to create the overall complexity of the clustering
model. For these reasons, it is important that psychological clustering models are
evaluated against data using criteria that are sensitive to the full range of influences
on model complexity.

The goal of psychological clustering is to find the best representation of empirical
similarity data. The defining part of a representation is the cluster structure
F, which encodes fixed assumptions about the representational regularities in a
stimulus environment. Unlike these core assumptions, the saliency weights w and
constant c are parameters of a particular representation, which are allowed to vary
freely so that the representational model can be tuned to the data. In general,
finding the best parameter values for a given set of clusters is straightforward. The
difficulty is finding the best set of clusters. This involves the theoretical challenge of
developing criteria for comparing different cluster representations, and the practical
challenge of developing combinatorial optimization algorithms for finding the best
cluster representations using these criteria .

This chapter relies on the Geometric Complexity Criterion [GCC: Myung, Bal-
asubramanian, and Pitt 2000; see also Pitt, Myung, and Zhang 2002] for model
evaluation. In the GCC goodness-of-fit is measured by the maximum log likelihood
of the model, ln p (D | θ∗), where p (·) is the likelihood function, D is a data sample
of size N , and θ is a vector of the k model parameters which take their maximum
likelihood values at θ∗. The complexity of the model is measured in terms of the
number of distinguishable data distributions that the model indexes through para-
metric variation. The geometric approach developed by Myung, Balasubramanian
and Pitt [2000] leads to the following four term expression:

GCC = − ln p (D | θ∗) +
k

2
ln
(

N

2π

)
+ ln

∫
dθ
√

det I (θ) +
1
2

ln
(

detJ (θ∗)
det I (θ∗)

)
,
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where

Iij (θ) = −Eθ

[
∂2 ln p (D | θ)

∂θi∂θj

]

is the Fisher Information Matrix of the model parameters, and

Jij (θ∗) = −
[
∂2 ln p (D | θ)

∂θi∂θj

]

θ=θ∗

is the covariance matrix of the model parameters at their maximum likelihood
values.

Under the assumption that the similarities follow Gaussian distributions, with
common variance estimated by σ̂2, the probability of similarity data S arising for
a particular featural representation F, using a particular weight parameterization
w, is given by

p (S | F,w) =
∏

i<j

1(
σ̂
√

2π
) exp

(
−

(sij − ŝij)
2

2σ̂2

)

=
1

(
σ̂
√

2π
)n(n−1)/2

exp


− 1

2σ̂2

∑

i<j

(sij − ŝij)
2


 ,

and so the log-likelihood takes is the sum of squared difference between the empirical
data and model predictions, as scaled by the estimated precision of the data. The
first term of the GCC, which measures data-fit, is simply the maximum of this
log-likelihood, corresponding to the maximum likelihood modeled similarities ŝ∗ij ,
as follows:

− ln p (S | F,w∗) =
1

2σ̂2

∑

i<j

(sij − ŝ∗ij)
2 + constant. (2.3)

The second term of the GCC for a model with m clusters is found by noting
that it uses m + 1 parameters (including the additive constant), and that an n× n

similarity matrix contains n (n − 1) /2 observations, giving

m + 1
2

ln
(

n(n − 1)
4π

)
. (2.4)

For the common and distinctive similarity models given in Eqs. (2.1) and (2.2),
the calculation of the second-order partial derivatives

∂2 ln p (S | F,w)
∂wx∂wy

is straightforward, and allows the Fisher Information Matrix I (w) and the covari-
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ance matrix J (w) to be specified. As it turns out, these two matrices are identical
for all of the clustering models considered here, and so the fourth term of the GCC
vanishes. This makes the GCC identical to Rissanen’s [1996] asymptotic approxi-
mation to the Normalized Maximum Likelihood [see Grünwald this volume].

In fact, the two matrices I (w) and J (w) assume a constant value that is
independent of the weight parameters, and is determined entirely by F, which also
simplifies the third term of the GCC. This constant value is conveniently written
as the determinant of an (m+1)× (m+1) “complexity matrix”, G = [gxy], defined
as

gxy =
∑

i<j

eijxeijy ,

where

eijk =

{
fikfjk for common features,

|fik − fjk | for distinctive features.

Using the complexity matrix, and assuming that, since the similarity values are
normalized, the weight parameters range over the interval [0, 1], the third term of
the GCC is given by:

ln
∫

dw
√

det I (w) = ln
∫ 1

0

∫ 1

0

. . .

∫ 1

0

√
det
(

1
σ̂2

G
)

.dw1.dw2 . . . dwm+1

=
1
2

ln det G− m + 1
2

ln σ̂2. (2.5)

Putting together the results in Eqs. (2.3), (2.4) and (2.5), the GCC for the
clustering models is given as

GCC =
1

2σ̂2

∑

i<j

(sij − ŝ∗ij)
2 +

m + 1
2

ln
(

n(n − 1)
4πσ̂2

)
+

1
2

ln detG + constant.

Strictly speaking, the GCC requires a number of regularity conditions are met.
However, Takeuchi [this volume] shows that the asymptotic GCC approximation
of the Normalized Maximum Likelihood holds under a wide variety of conditions,
and for a wide variety of models. While we have not checked all of the conditions,
the most important ones (including positive definiteness of the Fisher Information
Matrix) certainly hold.
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2.4 Established Psychological Clustering Models

Additive clustering and additive trees are by far the most commonly used clustering
models in psychology. In this section, illustrative examples of these models are
provided demonstrating them being fit to similarity data using the GCC, together
with analysis and simulation results based on their complexity matrices.

2.4.1 Additive Clustering

2.4.1.1 Illustrative Example

Lee and Navarro [2002] considered the similarities between nine colored shapes that
combined the colors red, green and blue with the shapes circle, square and triangle.
Twenty subjects rated the similarity of all 36 possible object pairs, presented in a
random order, on a five point scale. The final similarity matrix was arithmetically
averaged across subjects, and made symmetric by transpose averaging.

Figure 2.4 shows the additive clustering representation of these data correspond-
ing to the minimum GCC value, as found using a stochastic hill-climbing optimiza-
tion algorithm [Lee 2002a]. This model explains 99.3% of the variance in the data,
and each of the clusters is readily interpreted as a color or shape. Interestingly,
the weights of the clusters suggest that people assigned relatively greater emphasis
to common color than common shape when judging similarity. The representation
also highlights the need for overlapping clusters, so that the orthogonal color and
shape characteristics of the objects can both be accommodated.

R R R

G G G

B B B

.602

.590

.577

.473 .510 .473

Figure 2.4 Overlapping common features representation, including cluster weights, of
the colored shapes.
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2.4.1.2 Interpretation of Complexity Matrix

The complexity matrix for additive clustering models is

G =




∑
i<j fi1fj1

∑
i<j fi1fj1fi2fj2 · · ·

∑
i<j fi1fj1fimfjm∑

i<j fi2fj2fi1fj1

∑
i<j fi2fj2 · · ·

∑
i<j fi2fj2fimfjm

...
...

. . .
...

∑
i<j fimfjmfi1fj1

∑
i<j fimfjmfi2fj2 · · ·

∑
i<j fimfjm




.

The diagonal elements,
∑

i<j fikfjk, count the number of object pairs in the kth
cluster, and so measure cluster size. The off-diagonal elements,

∑
i<j fixfjxfiyfjy,

count the number of object pairs that are in both the xth and yth clusters, and so
measure the overlap between clusters.

To make these ideas concrete, observe that the complexity matrix for the repre-
sentation of the colored shapes in Figure 2.4 is

G =




3 0 0 0 0 0

0 3 0 0 0 0

0 0 3 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3




.

Because each cluster has three objects, and hence three pairs of objects, all of the
diagonal elements are three. Because each pair of clusters either has no overlap, or
has one object in common, no pair of clusters share a pair of objects, and so all of
the off-diagonal elements are zero.

2.4.1.3 Partitions

It is possible to show that, in general, G will be positive definite [Lee 2001, pp.
142-143]. This allows Hadamard’s inequality [e.g., Bellman 1970, pp. 129-130] to be
applied, so that the determinant is less than or equal to the product of the main
diagonal,

detG ≤
∏

k

gkk =
∏

k

∑

i<j

fikfjk,

with equality occurring when all off-diagonal elements are zero. This suggests
that partitions, which have diagonal complexity matrices, are complicated cluster
structures. There are, however, two important caveats to be placed on the generality
of this result [Navarro 2003]. First, while being a partition is sufficient for a diagonal
complexity matrix, it is not necessary. Since the counts in G are of object pairs,
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clusters that have only one object in common also produce zero off-diagonal entries.
The complexity matrix for the colored shapes in Figure 2.4 is a good example of this.
Secondly, Hadamard’s inequality requires that the product of the main diagonal
elements remains constant, and so can only be used to compare cluster structures
where the number of object pairs, and hence the number of objects, in each cluster
is the same.

For partitions, or other cluster structures with diagonal complexity matrices, the
determinant is simply the product of the diagonal elements, and so the number
of objects in clusters determines model complexity. In particular, complexity is
decreased by removing an object from a cluster, or by moving an object from a
smaller cluster to a larger cluster.

Both of these results still hold when the universal cluster corresponding to
the additive constant is included. This can be demonstrated by considering the
complexity matrix G+ obtained when incorporating the universal cluster, which is

G+ =

[
G y

yT z

]
,

where z = n (n − 1) /2 is the total number of object pairs, and y is a vector of the
diagonal elements in G. A standard result [e.g., Magnus and Neudecker 1988, p.
23] is that the determinant of this augmented complexity matrix can be written as

detG+ = detG(z − yTG−1y),

and it turns out [Lee 2001, pp. 144-145] that removing objects from clusters, or
moving them from smaller to larger clusters, continues to increase complexity.

Interestingly, the reduction in complexity achieved by making clusters different
sizes has a natural interpretation in terms of Shannon’s [1948] Noiseless Coding
Theorem. This theorem shows that the minimum average message length needed
to convey a structure is approximately given by the entropy of that structure [Li
and Vitányi 1993, p. 71]. From this perspective, a partition where each cluster has
the same number of objects is more complicated because each cluster is equally
likely, maximizing the entropy of the representation and its message length.

2.4.1.4 Nested Clusters

A two cluster model has complexity matrix

G =

[
a b

b c

]
,

where a ≥ c and b ≤ c. Since detG = ac − b2 is minimized when b = c, the
simplest possible two cluster model is a strictly nested one. Lee [2001] follows this
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observation with an intuitive argument that, given a strictly nested cluster structure
with i clusters, the increase in complexity from adding the (i + 1)th cluster is
minimized by making it also strictly nested. Together, these two arguments lead to
the induction that strictly nested cluster structures are maximally simple additive
clustering models.

Given a strictly nested cluster structure, the elementary row operation




1 0 0 · · · 0

−1 1 0 · · · 0

−1 0 1 · · · 0
...

...
...

. . .
...

−1 0 0 · · · 1







a b c · · · x

b b c · · · x

c c c · · · x
...

...
...

. . .
...

x x x · · · x




=




a b c · · · x

b − a 0 0 · · · 0

c − a c − b 0 · · · 0
...

...
...

. . .
...

x − a x − b x − c · · · 0




shows that det G = (−1)m+1(b − a)(c − b) . . . x. Since a strictly nested model is
restricted to having a > b > c > . . . > x, this means that the complexity of nested
representation is minimized by having each successive cluster encompass one fewer
object pairs than its predecessor.

2.4.1.5 General Cluster Structures

For general cluster structures, Hadamard’s inequality suggests two ways of reducing
model complexity. The first is to minimize the number of objects in clusters, since
this minimizes the diagonal elements whose product determines the upper bound
on complexity. The second is to introduce overlap between the clusters, since this
creates non-zero off-diagonal elements. In general, these two strategies conflict with
one another, since increasing the overlap between clusters is often best achieved by
increasing their size, and reducing cluster size will often come at the expense of
reducing overlap.

Navarro [2002] reported the results of a simulation study designed to explore of
how cluster size and overlap interact to determine complexity. This study used
sample of 105 randomly generated cluster structures with ten objects and six
clusters, and measured their complexity, average cluster size, and average overlap.
The size of a cluster containing a objects out of the total n = 10 was measured as
the proportion of object pairs that were included, a (a − 1) / (n (n − 1)). Similarly,
the overlap between two clusters containing a ≥ b objects, of which c were included
in both, was measured as c (c − 1) / (b (b − 1)). Figure 2.5 shows the relationship
between size, overlap and complexity for a representative subsample of 103 of the
cluster structures. Figure 2.6 shows the relationship between overlap and complexity
for the 823 cluster structures with a constant average cluster size of approximately
41.6%. The basic results are that increasing size increases complexity, increasing
cluster overlap decreases complexity, but that the increase due to size outweighs
the decrease due to overlap.
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Figure 2.5 The complexity of a sample of 103 cluster structures with ten objects and
six clusters, shown by crosses as a function of average size and overlap. The projection of
each pair of measures is also shown.
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Figure 2.6 The complexity of a sample of 823 cluster structures with constant average
size and variable overlap.
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Figure 2.7 Additive tree representation of the risk similarity data

2.4.2 Additive Trees

2.4.2.1 Illustrative Example

Johnson and Tversky [1984, Table A1, lower triangular half] collected similarity
data for 18 different ‘risks’, obtained by pooling the ratings made by subjects for
each pair on a nine-point scale. Figure 2.7 shows the additive tree representation
of these data, found using a stochastic search algorithm to minimize the GCC. The
internal nodes correspond to clusters of risks that can be interpreted as (clockwise
from top) ‘natural disasters’, ‘technological disasters’, ‘violent acts’, ‘illnesses’ and
‘accidents’.

It is interesting to compare this representation, which explains about 70% of the
variance in the data, with previous additive tree analyses of the same data [Johnson
and Tversky 1984; Corter 1996]. These previous analyses did not explicitly consider
model complexity, but instead fitted ‘full’ trees with (n − 3) = 15 internal nodes,
explaining about 75% of the variance. Interpretation of these more complicated
trees, however, is only offered for nodes near to the top of tree, and basically
corresponds to those concepts shown in Figure 2.7. This lack of extra interpretability
suggests that the superior goodness-of-fit achieved by the more complicated trees
does not come from finding additional meaningful regularities in the data.
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2.4.2.2 Interpretation of Complexity Matrix

The complexity matrix for additive tree models is

G =




∑
i<j eij1

∑
i<j eij1eij2 · · ·

∑
i<j eij1eijm∑

i<j eij2eij1

∑
i<j eij2 · · ·

∑
i<j eij2eijm

...
...

. . .
...

∑
i<j eijmeij1

∑
i<j eijmeij2 · · ·

∑
i<j eijm




.

where eijk = 1 if the kth edge is on the unique path between objects i and j,
and eijk = 0 if it is not. The diagonal elements count the number paths connecting
objects that include each edge. The off-diagonal elements count the number of paths
connecting objects that use each possible pairing of edges.

2.4.2.3 Extending Star Trees

Additive trees with a single internal (non-terminal) node are called star trees, and
have complexity matrix

Gstar =




n − 1 1 1 · · · 1

1 n − 1 1 · · · 1

1 1 n − 1 · · · 1
...

...
...

. . .
...

1 1 1 · · · n − 1




.

If a star tree is extended to have two internal nodes, its complexity matrix becomes

G =

[
Gstar y

yT z

]
,

where z counts the number of paths that pass through the edge between the internal
nodes, and y = (y1, y2, . . . , yn)T is a column vector where yi counts the number
of paths that pass through both the internal edge and the edge from the terminal
node representing the ith object. The determinant of this complexity matrix can
be written as

detG = detGstar(z − yTG−1
stary),

where
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Figure 2.8 The two possible ways of adding a second internal node to a star tree
representing six objects.

G−1
star =

1
2(n − 1)(n − 2)




2n − 3 −1 −1 · · · −1

−1 2n− 3 −1 · · · −1

−1 −1 2n − 3 · · · −1
...

...
...

. . .
...

−1 −1 −1 · · · 2n − 3




.

In the simplest interesting case, the additional internal node is added to a star
tree representing six objects. There are two possibilities, shown in Figure 2.8.
The tree on the left divides the objects into two clusters of three. Here z = 9,
yT = (3, 3, 3, 3, 3, 3), and so detG = 3.6. The tree on the right divides the objects
into a cluster of four and a cluster of two. Here z = 8, yT = (2, 2, 2, 2, 4, 4), and so
detG = 2.2. The tree on the left, with an equal number of objects in each cluster,
is more complicated.

More generally, adding an internal node to a star tree representing n objects
creates one cluster with r objects, and another cluster with the remaining (n − r).
Here z = r (n − r), the first r elements of yT are (n − r) and the remaining (n − r)
elements are r. This results in

detG = r (n − r)
(

1 +
2r (n − r)

(n − 1) (n − 2)
−

n

n − 2

)
,

which increases monotonically with r (n − r). This generalizes the six object result,
showing that dividing any number of objects evenly between the two clusters leads
to the greatest complexity.
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Figure 2.9 The relationship between complexity and mean edges per path for all
possible additive trees with ten internal nodes, where each has three terminal nodes.

2.4.2.4 General Tree Structures

The complexity matrix of an additive tree with m clusters can be represented as
the result of adding (m − 1) clusters to a star tree, so that

G =

[
Gstar Y

YT Z

]
.

The (m − 1) × (m − 1) matrix Z has both rows and columns corresponding to
edges between internal nodes, counting the number of paths between objects that
include each possible pairing of these edges. The n × (m − 1) matrix Y has rows
corresponding to edges connecting terminal nodes, columns corresponding to edges
between internal nodes, and elements counting the number of paths between objects
that include each possible combination of these internal and terminal edges. This
decomposition allows the determinant to be given as

detG = detGstar det
(
Z −YTG−1

starY
)
,

which depends only on Y and Z for a fixed number of objects.
To explore the relationship between the topology of additive trees and their
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�
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Figure 2.10 The (a) most complicated and (b) least complicated additive trees with
ten internal nodes, where each has three terminal nodes.

complexity, Navarro [2002] generated all possible trees with between five and ten
internal nodes, under the restriction that all internal nodes were connected to two,
three or four terminal nodes. For a given number of internal nodes, complexity was
observed to increase roughly linearly with the average number of edges in the paths
connecting objects, regardless of the number of terminal nodes. Figure 2.9 shows
the relationship for trees of ten internal nodes with three terminal nodes each.
Figure 2.10 shows the most and least complicated of these trees. The basic result
is that broad trees, which have longer average path lengths, are more complicated
than deep trees, which have shorter average path lengths.

2.5 New Psychological Clustering Models

This section presents two new psychological clustering models that extend the
representational possibilities of additive clustering and additive trees. The first
model uses a similarity measure that considers both common and distinctive
features, while the second moves beyond clustering to incorporate continuous
dimensions in its representations. Both models are demonstrated by applying them
to similarity data under complexity constraints, but analyses of the complexity of
these models have not been made. The study of the complexity of these models is
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an important area for future research.

2.5.1 Overlapping Common and Distinctive Features

Tversky [1977] proposed two similarity models combining common and distinctive
features, known as the Contrast Model and the Ratio Model. Under the Contrast
Model, similarity is measured as an additive mixture of common and distinctive
features. Under the Ratio Model, similarity is measured as the proportion of
common to distinctive features. The Ratio Model has a natural interpretation in
terms of a Bayesian theory of generalization [Tenenbaum and Griffiths 2001], but
the Contrast Model is more difficult to interpret, because it treats each cluster
as being part common feature and part distinctive feature. To overcome this
difficulty, Navarro and Lee [2002] proposed a modified version of the Contrast Model
that designates each cluster as being either a completely common or completely
distinctive feature, but allows both types of cluster in the same model.

Under this “Modified Contrast Model” approach, similarity is measured as

ŝij = c +
∑

k∈CF

wkfikfjk −
∑

k∈DF

wk |fik − fjk | , (2.6)

where k ∈ CF means that the sum is taken over the common features, and k ∈ DF

means that the sum is taken over the distinctive features. The complexity matrix
G and GCC for this similarity model can be derived in exactly the same way as
the purely common and distinctive cases, by making the appropriate choice in Eq.
(2.6) for each cluster.

2.5.1.1 Illustrative Example

Rosenberg and Kim [1975] collected data, later published by Arabie, Carroll and
DeSarbo [1987, pp. 62–63], measuring the similarities between 15 common kinship
terms, such as ‘father’, ‘daughter’, and ‘grandmother’. The similarities were based
on a sorting task undertaken by six groups of 85 subjects, where each kinship
term was placed into one of a number of groups, under various instructions to the
subjects. A slightly modified version of this data set that excludes the term ‘cousin’
is considered, because it is interesting to examine how the model deals with the
concept of gender, and ‘cousin’ is the only ambiguous term in this regard.

Table 2.1 describes the overlapping common and distinctive features clustering
found by applying stochastic hill-climbing optimization to minimize the GCC.
The clusters correspond to easily interpreted common and distinctive features.
It has four distinctive features, dividing males from females, once removed terms
(aunt, nephew, niece uncle) from those not once removed, extreme generations
(granddaughter, grandfather, grandmother, grandson) from middle generations,
and the nuclear family (brother, daughter, father, mother, sister, son) from the
extended family. It also has six common features, which correspond to meaningful
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Table 2.1 Overlapping common and distinctive features representation of the kinship
terms.

Type Objects in Cluster Weight Interpretation

DF Brother, Father, Grandfather,
Grandson, Nephew, Son, Uncle 0.452 Gender

CF Aunt, Uncle 0.298 Adult extended family

CF Nephew, Niece 0.294 Child extended family

CF Brother, Sister 0.291 Siblings

CF Grandfather, Grandmother 0.281 Grandparents

CF Father, Mother 0.276 Parents

CF Granddaughter, Grandson 0.274 Grandchildren

DF Aunt, Nephew, Niece, Uncle 0.230 Once-Removed

DF Granddaughter, Grandfather,
Grandmother, Grandson 0.190 Extreme Generation

DF Brother, Daughter, Father, Mother,
Sister, Son 0.187 Nuclear Family

universal cluster 0.660

subsets within the broad distinctions, such as parents, siblings, grandparents and
grandchildren. These concepts are common features since, for example, a brother
and sister have the similarity of being siblings, but this does not make those who
are not siblings, like an aunt and a grandson, more similar.

The kinship data provide a good example of the need to consider both common
and distinctive features in the same clustering model. Common features models,
such as additive clustering, are inefficient in representing concepts like ‘gender’,
because they need to include separate equally-weighted clusters for ‘male’ and
‘female’. Distinctive feature models, on the other hand, generally cannot represent
concepts like ‘siblings’, where the objects outside the cluster do not belong together.

2.5.1.2 Complexity Issues

The Modified Contrast Model uses both the common and distinctive similarity
measures in Eqs. (2.1) and (2.2) to model similarity. This means that, in a way unlike
additive clustering or additive tree models, the weight parameters of the model
have different ‘functional forms’ [Myung and Pitt 1997] of interaction, depending
on whether they are associated with a common or distinctive feature. An interesting
model complexity issue raised by combining common and distinctive features,
therefore, relates to the relative complexity of the two different similarity models.
Some preliminary evidence [Navarro 2002, pp. 122-124], based on simulation studies,
suggests that common features increase the complexity of a model more than
distinctive features. Analysis of the complexity matrix for the Modified Contrast
Model provides an opportunity to understand the basis and generality of this
finding, and is a worthwhile area for further research.
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2.5.2 Combining Features with Dimensions

Whatever representational assumptions are made, and whatever similarity measure
is used, clustering models are inefficient when dealing with the inherently continu-
ous aspects of the variation between objects. Most psychological modeling in these
cases uses the “multidimensional scaling” model described earlier, where objects
are represented by values along one or more continuous dimensions, so that they
correspond to points in a multidimensional space. The dissimilarity between objects
is then measured by the distance between their points. While dimensional repre-
sentation naturally captures continuous variation, it is constrained by the metric
axioms, such as the triangle inequality, that are violated by some empirical data.

It has been argued [e.g., Carroll 1976; Tenenbaum 1996; Tversky 1977] that spa-
tial representations are most appropriate for low-level perceptual stimuli, whereas
cluster representations are better suited to high-level conceptual domains. In gen-
eral, though, stimuli convey both perceptual and conceptual information, and so
both dimensional and clustering representations need to be combined. As Carroll
[1976, p. 462] concludes: “Since what is going on inside the head is likely to be com-
plex, and is equally likely to have both discrete and continuous aspects, I believe
the models we pursue must also be complex, and have both discrete and continuous
components”.

In this spirit, Navarro and Lee [2003] developed a representational model that
combines continuous dimensions with discrete features. Objects take values on a
number of dimensions, as well as potentially belonging to a number of clusters.
If there are v dimensions and m features, this means the ith object is defined by
a point pi, a vector fi, and the cluster weights w = (w1, . . . , wm). The similarity
between the ith and jth objects is then modeled as the sum of the similarity arising
from their common features, minus the dissimilarity arising from their dimensional
differences under the Minkowskian r-metric, so that:

ŝij =

(
m∑

k=1

wkfikfjk

)
−

(
v∑

k=1

|pik − pjk|r
) 1

r

+ c.

2.5.2.1 Illustrative Example

Shepard, Kilpatric and Cunningham [1975] collected data measuring the “abstract
conceptual similarity” of the numbers 0 through 9. Figure 2.11(a) displays a two-
dimensional representation of the numbers, using the City-Block metric, found by
multidimensional scaling. This representation explains only 78.6% of the variance,
and fails to capture important regularities in the raw data, such as the fact that
the number 7 is more similar to 8 than it is to 9, and that 3 is much more similar
to 0 than it is to 8. Figure 2.11(b) shows an eight-cluster representation of the
numbers using the same data, found by Tenenbaum [1996] using additive clustering.
This representation explains 90.9% of the variance, with clusters corresponding
to arithmetic concepts (e.g., {2, 4, 8} and {3, 6, 9}) and to numerical magnitude
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Figure 2.11 Representations of the numbers similarity data using the (a) dimensional
and (b) clustering models.

1 2 3 4 5 6 7 8 90 Objects in Cluster Weight

2 4 8 0.286
3 6 9 0.282

2 4 6 8 0.224
1 3 9 0.157

universal cluster 0.568

Figure 2.12 Representation of the numbers similarity data using the combined model
with one dimension (shown on the left) and four clusters (shown on the right).

(e.g., {1, 2, 3, 4} and {6, 7, 8, 9}). While the clusters are appropriate for representing
the arithmetic concepts, a ‘magnitude’ dimension seems to offer a more efficient
and meaningful representation of this regularity than the five clusters used in
Figure 2.11(b).

Navarro and Lee [2003] fitted combined models with between one and three
dimensions and one and eight clusters to the similarity data. Because analytic
results for the complexity of the combined model are not available, the Bayesian
approach of selecting the most likely model given the data was used [e.g., Kass and
Raftery 1995], based on an approximation to the log posterior found by importance
sampling [e.g., Oh and Berger 1993]. The best representation under this measure
contains one dimension and four clusters, explains 90.0% of the variance, and is
shown in Figure 2.12. The one dimension almost orders the numbers according to
their magnitude, with the violations being very small. The four clusters all capture
meaningful arithmetic concepts, corresponding to “powers of two”, “multiples of
three”, “multiples of two” (or “even numbers”) and “powers of three”.
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2.5.2.2 Complexity Issues

The combined model also raises interesting complexity issues related to the func-
tional form of parameter interaction. The coordinate locations of the points inter-
act according to the Minkowskian distance metric that is used to model similarity.
In psychological applications of multidimensional scaling, particular emphasis has
been placed on the r = 1 (City-Block) and r = 2 (Euclidean) cases because of their
relationship, respectively, to so-called ‘separable’ and ‘integral’ dimensions [Garner
1974]. Pairs of separable dimensions are those, like shape and size, that can be
attended to separately. Integral dimensions, in contrast, are those rarer cases like
hue and saturation that are not easily separated. Metrics with r < 1 have also been
given a psychological justification [Gati and Tversky 1982; Shepard 1991] in terms
of modeling dimensions that ‘compete’ for attention. Little is known about the rela-
tive complexities of these different metrics, although there is some simulation study
evidence [Lee and Pope 2003] that the City-Block metric is complicated, because
it allows multidimensional scaling models to achieve high levels of goodness-of-fit,
even for data generated using another metric. There is a need, however, for much
more detailed analysis of the complexity of the combined model.

2.6 Conclusion

Clustering aims to find meaningful and predictive representations of data, and so is a
fundamental tool for data analysis. One of the strengths of clustering models is that
they potentially allow for great representational flexibility, and can accommodate
sophisticated measures for assessing the relationships between objects. The price
of these freedoms, however, is the need to control their complexity, so that they
capture the regularities underlying data that are important for explanation and
prediction.

This chapter has attempted to meet the challenge by treating clustering models
as statistical models, and using the Geometric Complexity Criterion for the sta-
tistical inference of model selection. Theoretically, this statistical approach offers
interpretable measures of the complexity of clustering models. The results for addi-
tive clustering and additive tree models are good examples of this. Practically, the
statistical approach offers a useful way of generating models from data. It compares
favorably with the collections of heuristics that must otherwise be used to deter-
mine basic properties of a model, such as how many clusters it uses. The illustrative
applications of the additive clustering and additive tree models are good examples
of the sorts of representations that can be learned from data under complexity
constraints. Finally, this chapter has also attempted to demonstrate the potential
for new clustering models, and the new complexity issues they raise. Clustering
models, like all good scientific models, should be developed and extended boldly,
seeking general and powerful accounts of data, but also need to be evaluated and
differentiated carefully, taking account of all of the complexities bound up in their
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generality and power.
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