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Nonparametric Bayesian models of categorization

Motivation

Models of human categorization often focus on the psychological processes by which people form and

use knowledge of categories, appealing to concepts such as memory traces, activation, and similarity. An

alternative approach is to take a step back from these psychological processes, and instead consider the

abstract computational problem being solved when we learn categories, exploring how ideal solutions to

that problem might shed light on human behavior. This kind of investigation – conducted at Marr’s (1982)

computational level, or via Anderson’s (1990) principles of rational analysis – has been particularly

successful for categorization, identifying some surprising connections between psychological process models

and methods used in machine learning and statistics. This chapter explores some of these connections in

detail, and may present technical ideas that are new to many readers. Those who are interested in the

mathematical details can find readable introductions from the perspectives of machine learning and

cognitive science in Bishop (2006) and Griffiths, Kemp, and Tenenbaum (2008) respectively.

Categorization is an instance of an inductive problem, requiring category membership to be inferred

from the limited information provided by the features of a stimulus. As such, an ideal solution to this

problem is provided by Bayesian inference, and in particular by computing a probability distribution over

categories given the stimulus. If the joint probability of the features x and category label c of a stimulus is

p(x, c), then the probability that x belongs to category c is given by

p(c|x) =
p(x, c)∑
c′ p(x, c′)

(1)

where the sum in the denominator ranges over all categories. From this perspective, learning a category

reduces to estimating the joint probability distribution p(x, c), indicating the probability of observing an

object x that belongs to category c. Rational analyses of category learning thus agree that it is

fundamentally a problem of density estimation, although they differ in whether they focus on estimating

the joint distribution p(x, c) directly (e.g., Anderson, 1990) or they consider how conditional distributions

p(x|c) could be estimated for each category separately (e.g., Ashby & Alfonso-Reese, 1995; Nosofsky, 1998;

Rosseel, 2002).
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Traditional statistical solutions to the problem of density estimation are of two types: parametric

and nonparametric (Silverman, 1986). In parametric density estimation, a probability distribution is

assumed to be of a known form, such as a Gaussian, and density estimation consists of determining the

parameters of that distribution. In traditional nonparametric density estimation schemes, a probability

distribution is approximated as the sum of a set of “kernels” – functions which fall off with distance from a

central point – where the kernels are centered on points sampled from the distribution. When used to

estimate the conditional distribution on features associated with each category, p(x|c), these two

approaches correspond to the two main classes of psychological process models: prototype and exemplar

models (Ashby & Alfonso-Reese, 1995). Prototype models, corresponding to parametric density estimation,

assume that a category is associated with a single prototype and that categorization involves comparing

new stimuli to these prototypes (e.g., Reed, 1972). Exemplar models, corresponding to kernel-based

nonparametric density estimation, assume that a category is represented by a set of stored exemplars and

that categorizing new stimuli involves comparing these stimuli to the set of exemplars in each category

(e.g., Medin & Schaffer, 1978; Nosofsky, 1986).

Traditional parametric and nonparametric density estimation methods have different advantages and

disadvantages: the greater flexibility of nonparametric methods comes at the cost of requiring more data to

estimate a distribution. Consequently, there is not a clear argument in favor of one of these approaches

from rational grounds, and statisticians have begun to explore more sophisticated density estimation

techniques that combine the strengths of both approaches by supporting representations that interpolate

between using a single parametric distribution and having a kernel associated with each stimulus. Many of

these approaches are based on mixture models, in which a distribution is assumed to be a mixture of a set

of parametric densities (McLachlan & Basford, 1988). This is an idea that resonates with work in

psychology that has explored process models in which categories are represented using clusters of several

exemplars, with each cluster having its own prototype (e.g., Love, Medin, & Gureckis, 2004; Vanpaemel &

Storms, 2008). The potential for mixture models to capture representations that lie between prototypes

and exemplars has been recognized in the psychological literature (Anderson, 1990; Rosseel, 2002).

Recently, models of human categorization have begun to draw on another basic advance in density

estimation techniques from statistics and machine learning. Nonparametric Bayesian methods for density

estimation (e.g., Escobar & West, 1995; Neal, 1998) provide ways to adaptively select the effective number
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of clusters to use in representing a distribution, while allowing the number of possible clusters to remain

unbounded. These models are particularly interesting in the context of understanding human category

learning, as they offer an alternative to the idea that a single fixed representational strategy (such as

forming prototypes or remembering exemplars) is necessary. Nonparametric Bayesian models illustrate how

a rational learner could adaptively form a representation based on the distributional properties of the

observed stimuli.

The most basic nonparametric Bayesian density estimation method is based on the Dirichlet process

mixture model (DPMM; Antoniak, 1974). The DPMM assumes that a probability distribution can be

represented as an infinite mixture of parametric densities, where the parameters of those densities are

generated from a stochastic process known as the Dirichlet process (Ferguson, 1973). While the

mathematical definition of the Dirichlet process is complex (for details, see Navarro, Griffiths, Steyvers, &

Lee, 2006), its implications are straightforward. When the first stimulus is observed, a cluster (with an

associated parametric distribution) is created to represent that stimulus. Each subsequent stimulus is then

assigned to either an existing cluster (with probability proportional to the number of stimuli already

assigned to that density), or is represented by a new cluster. The result of this process is a probability

distribution over partitions of the stimuli into clusters that are each modeled with a single parametric

density. This partitioning of the data is equivalent to the assumption in psychological process models that

people might represent categories in terms of several clusters that can each be summarized by a prototype

(e.g., Kruschke, 1990; Love et al., 2004; Vanpaemel & Storms, 2008).

As with other density estimation methods, the DPMM has a connection to a psychological model.

However, in this case the connection is not to a process model, but to a rational model: Anderson’s (1990,

1991) rational model of categorization. Anderson considered how the probability distribution associated

with a set of categories could be estimated, and independently developed a solution to this problem that

was equivalent to the DPMM (the equivalence was first pointed out by Neal, 1998). Recognizing this

equivalence makes it possible to use algorithms developed for the DPMM to better approximate optimal

performance in Anderson’s rational model (Sanborn, Griffiths, & Navarro, 2006) and to develop

psychological models that draw on recent generalizations of the Dirichlet process that have been developed

in machine learning and statistics, such as the hierarchical Dirichlet process (Teh, Jordan, Beal, & Blei,

2004).
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The key idea behind nonparametric Bayesian models – that learners can adaptively form a

representation that captures the structure expressed in the observed data – is also applicable in cases that

go beyond simple clustering of stimuli based on their features. Shafto, Kemp, Mansinghka, Gordon, and

Tenenbaum (2006) introduced a model for learning cross-cutting systems of categories in which a similar

principle was used to simultaneously decide how many systems of categories might be relevant to

understanding the features of stimuli, and which category each stimulus belongs to within each system.

Kemp, Tenenbaum, Griffiths, Yamada, and Ueda (2006) showed how the key ideas behind the DPMM

could be extended to data that reflect the relations that exist among a set of stimuli, rather than the

features that those stimuli express. This model could discover clusters of stimuli that behaved similarly in

relation to other clusters of stimuli, forming abstractions about relational roles that might form a first step

towards learning more complex relational systems such as folk theories (Kemp, Tenenbaum, Niyogi, &

Griffiths, in press).

Our goal in this chapter is to provide a basic introduction to the ideas behind nonparametric

Bayesian models in the context of category learning. To this end, we first give a more formal description of

some nonparametric Bayesian models – the Dirichlet process mixture model, the hierarchical Dirichlet

process, and related extensions. We then discuss how algorithms for inference in these models can be

implemented, describing algorithms proposed both in psychology and in statistics. Finally, we present

simple examples illustrating the operation of different algorithms and the prediction of human behavior.

Description

Our description of nonparametric Bayesian models of categorization begins with the Dirichlet

process mixture model, since this model provides the simplest illustration of the principles on which other

models are based. We then define the hierarchical Dirichlet process, and summarize some of the other ways

in which this model has been extended.

The Dirichlet process mixture model

In order to compute the conditional probability distribution over categories specified in Equation 1,

we need to estimate a probability distribution over features x and category labels c, p(x, c). For simplicity,

we will drop c, since it can be considered another feature of the stimulus (albeit one that should be given

greater weight than other features), and just consider how we can estimate the joint distribution of a
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sequence of stimuli xN = (x1, . . . , xN ).1 Like other mixture models, the Dirichlet process mixture model

assumes that each xi was generated from a mixture component that is a parametric density. Intuitively,

each mixture component corresponds to a cluster of stimuli that go together. We will use zi to denote the

index of the mixture component from which xi was generated, and zN = (z1, . . . , zN ) to indicate the vector

of component assignments for all stimuli. Each zi is just a nominal variable picking out the cluster to

which xi belongs, so zN partitions the stimuli into clusters. A simple example helps to clarify the notation.

In the box in Figure 1, we have three stimuli that are observed sequentially. Each stimulus has three

binary features, but their features will not be important for now. Let us assume that an observer has

already seen the first two stimuli, but has not yet seen the third stimulus. x2 is thus the set of the first two

stimuli, x1 and x2. If these stimuli are assigned to the same component, the zi values will be equal, for

example z1 = z2 = 1. The only other alternative for two stimuli is that they are assigned to different

components, in which case z1 = 1 and z2 = 2.

Usually, we just observe the stimuli xN without being told which clusters they belong to. The joint

distribution p(xN ) is thus obtained by averaging over all possible assignments of stimuli to clusters, with

p(xN ) =
∑
zN

p(xN |zN )p(zN ) (2)

where p(xN |zN ) indicates the probability of the stimuli under the assignments zN , and p(zN ) is a

distribution that reflects our ignorance about the cluster assignments. If p(xN |zN ) depends only on which

stimuli are assigned to the same clusters, then all vectors of assignments zN that result in the same

partition of the stimuli will give the same probability to xN . Consequently, we can define p(zN ) by

specifying a probability distribution over partitions of N objects.

In the DPMM, this distribution over partitions corresponds to a stochastic process known as the

Chinese restaurant process (CRP; Aldous, 1985; Pitman, 2002). The CRP defines a distribution that has

two desirable properties: it makes it possible for any number of clusters to appear in the data, and it gives

each partition that has clusters of the same sizes the same probability. Under this process, we imagine that

stimuli are assigned to clusters one after another and the probability that stimulus i + 1 is assigned to

cluster k is

P (zi = k|zi−1) =


Mk

i−1+α if Mk > 0 (i.e., k is old)

α
i−1+α if Mk = 0 (i.e., k is new)

(3)
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where Mk is the number of stimuli that have already been assigned to cluster k, and α is a parameter of the

process that determines the probability of generating new clusters. The process gets its unusual name from

thinking of stimuli as customers entering a large Chinese restaurant, where the table they choose to sit at

corresponds to their cluster assignment. Following this process for all N stimuli results in a distribution

p(zN ) that has an interesting property: the probability of a partition zN does not depend on the order in

which we assigned stimuli to clusters. This property is known as exchangeability (Aldous, 1985).

To illustrate the use of the CRP, assume that the first two stimuli shown in Figure 1 are assigned to

the same cluster, z2 = (1, 1), when the third stimulus, x3, is observed. We can then use the CRP to

calculate the prior distribution over the cluster assignment for that object, z3. The CRP gives the prior

probability of x3 belonging to the cluster with the other two stimuli and the prior probability that it is

assigned to its own cluster. If α = 0.5, then P (z3 = 1|z2) = 2
3−1+0.5 = 0.8 and

P (z3 = 2|z2) = 0.5
3−1+0.5 = 0.2. The probability of a new cluster being created increases as α increases.

Up until this point, the features of the stimuli have been unimportant, but to fully specify the

DPMM, we also need to define the distribution p(xN |zN ) that links partitions to stimuli (often referred to

as the likelihood, with the Dirichlet process providing the prior on partitions zN ). This is done by assuming

that each cluster is associated with a probability distribution over stimuli. The choice of this distribution

depends on the properties of the data: with continuous features, a Gaussian distribution may be

appropriate, capturing the mean and variance of those features in each cluster; with discrete features, a

multinomial distribution can be used to specify the probability of each feature value in each cluster. The

distribution for each cluster is characterized by a set of parameters that can be estimated from the stimuli

assigned to that cluster, or simply integrated out of the probabilistic model. The stimuli in the simple

example shown in Figure 1 are parameterized by three binary features and the likelihoods p(x3|z3) are

calculated using separate multinomial distributions for each cluster. These multinomial distributions are

independent for each feature (for details, see Anderson, 1990; Neal, 1998; Sanborn et al., 2006).

When using the DPMM for categorization, we need to be able to compute the probability

distribution over features (including the category label) for a novel object. The distribution p(x, c) required

to apply Equation 1 is taken to be the posterior predictive distribution generated by the DPMM. This

distribution is used because we do not know what the appropriate cluster assignments zN are, so we have

to average over the posterior distribution on cluster assignments, just as we averaged over the prior in



Nonparametric Bayesian models of categorization 8

computing p(xN ) in Equation 2. The posterior predictive distribution is obtained by computing the

posterior probability of each partition zN of the stimuli xN that belong to the category, and then averaging

the probability of a new stimulus x over the resulting distribution. More formally, dropping c again for

convenience, we have

p(x|xN ) =
∑
zN

∑
z

p(x|z, zN ,xN )p(z|zN )p(zN |xN ) (4)

where p(x|z, zN ,xN ) is the probability of the stimulus x under the distribution associated with cluster z

given the other stimuli in xN assigned to z by the partition zN , p(z|zN ) is the probability of a stimulus

being generated from cluster z given the partition zN , and p(zN |xN ) is the posterior probability of the

partition zN given the stimuli xN . Of the quantities on the right hand side of this equation, p(x|z, zN ,xN )

can be computed directly from the specification of the distribution associated with each cluster. The

quantity p(z|zN ) follows directly from the CRP.

In the example shown in Figure 1, computing the posterior predictive distribution p(x3|x2) requires

summing over all possible partitions z2 which are z2 = (1, 1) and z2 = (1, 2) and summing over all possible

assignments of x3 to clusters given z2. Though this is straightforward in this case, computing the posterior

predictive distribution is computationally expensive for larger numbers of stimuli. The main challenge of

performing probabilistic inference using the DPMM is calculating the posterior distribution over partitions

zN given xN , because the number of partitions increases rapidly with N . We return to this problem later

in the chapter.

The hierarchical Dirichlet process

In Anderson’s (1990, 1991) original presentation of the RMC, category labels were taken to be just

another feature of the stimuli, as in our presentation of the DPMM. However, other rational analyses of

categorization have focused on estimating the conditional distribution over features x for each category c,

p(x|c) (e.g., Ashby & Alfonso-Reese, 1995; Nosofsky, 1998; Rosseel, 2002). It is straightforward to use a

DPMM to estimate these conditional distributions, but taking a separate mixture model for each category

means that the clusters that comprise those categories are taken to be completely disjoint. However, in

some cases it may make sense to share those clusters between categories, providing a common vocabulary

at a higher level than raw stimuli in which the structure of categories can be expressed. For example, a

cluster of tabby cats might be useful in learning the categories of both cats and striped objects. This kind
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of sharing of clusters between categories can be achieved using the hierarchical Dirichlet process (HDP).

The HDP, introduced by Teh, Jordan, Blei, and Beal (2004), is a straightforward generalization of

the basic Dirichlet process. Stimuli are divided into categories, and each category is modeled using a

Dirichlet process mixture model (with parameter α). A new stimulus is first compared to all of the clusters

in its category, with the prior probability of each cluster determined by Equation 3. If the stimulus is to be

assigned to a new cluster, the new cluster is drawn from a second Dirichlet process that compares the

stimulus to all of the clusters that have been created across groups. The probability of generating a new

cluster in this higher-level Dirichlet process is governed by the parameter γ, analogous to α, and the prior

probability of each cluster is proportional to the number of times that cluster has been selected by any

category, instead of the number of stimuli in each cluster. The new stimulus is only assigned to a

completely new cluster if both Dirichlet processes select a new cluster. In this manner, stimuli in different

categories can end up belonging to the same mixture component, simply by being drawn from the same

partition in the higher level. An illustration of this is shown in Figure 2.

The HDP provides a way to model probability distributions across categories. Each distribution is a

mixture of an unbounded number of clusters, but the clusters can be shared between categories. Shared

clusters allow the model to leverage examples from across categories to better estimate cluster parameters.

A priori expectations about the number of clusters in a category and the extent to which clusters are

shared between categories are determined by the parameters α and γ. When α is small, each category will

have few clusters, but when α is large, the number of clusters will be closer to the number of stimuli.

When γ is small, categories are likely to share clusters, but when γ is large, the clusters in each category

are likely to be unique.

The extra flexibility provided by the capacity to share clusters between categories means that the

HDP can be used to characterize a variety of different schemes for representing the structure of categories

as α and γ are varied. When α →∞ and γ →∞ we obtain an exemplar model, with one cluster per

stimulus and no sharing of clusters. When α → 0 and γ →∞ we obtain a prototype model, with one

cluster per category and no sharing of clusters. When α →∞ and γ is free to vary, we obtain a model

where each stimulus comes from its own cluster but those clusters are drawn from a Dirichlet process

shared between categories, similar to the original scheme for representing categories introduced by

Anderson (1990, 1991). The hierarchical Dirichlet process has thus been proposed as a unifying rational
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model of categorization, containing these other models as special cases and allowing the learner to

adaptively select an appropriate representation through estimation of α and γ in a given domain (Griffiths,

Canini, Sanborn, & Navarro, 2007).

Other nonparametric Bayesian models

The basic principles behind the nonparametric Bayesian models outlined in this section can be used

in any probabilistic model in which categories can be represented in terms of underlying clusters. This

means that the nonparametric Bayesian approach can be extended to capture learning from different kinds

of data, and forming richer representations of category structure. We will briefly summarize two models

that provide examples of such extensions: learning from relations, and learning cross-cutting systems of

categories.

Learning cross-cutting categories.

Most approaches to categorization, including the methods we describe above, assume that there is

one best way to organize the entities in a given semantic domain. Most natural domains, however, can be

represented in multiple ways: animals may be thought of in terms of their taxonomic groupings or their

ecological niches, foods may be thought of in terms of their nutritional content or social role; products may

be thought of in terms of function or brand; movies may be thought of in terms of their genre or star

quality. Another nonparametric Bayesian model, CrossCat (Shafto et al., 2006), discovers multiple systems

of categories given information about a domain of entities and their attributes. Each system of

entity-categories accounts for a distinct and coherent subset of the observed attributes.

As with the other models we have discussed, CrossCat uses Dirichlet processes as priors on how to

partition entities into categories within each system, and how to allocate attributes across systems. The

nonparametric formulation allows CrossCat to find appropriate tradeoffs between two kinds of simplicity

that are both desirable in a domain theory but tend to compete with each other: minimizing the number of

category systems, and minimizing the number of categories within each system. Building an overly

simplified model at either of these levels will lead to an overly complex model at the other. CrossCat

naturally prefers the theory that is most compact overall, splitting up a category system into two if it will

lead to many fewer categories per system, or splitting up a category within a system if it will substantially

increase the number of attributes that system can explain.
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CrossCat has been shown to discover meaningful semantic concepts in several kinds of data. For

instance, given a data set of animal species and their attributes, CrossCat finds three ways to categorize

the species: a system of taxonomic classes that accounts for anatomical and physiological properties, a

system of ecological classes that accounts for behavioral features (relevant to being a predator or prey, or

living in the land, air or sea); and a third system in which almost all species belong to the same class and

which explains features that do not vary much, or vary idiosyncratically over this domain (e.g., the color or

size of an animal). The model also finds cross-cutting systems of categories that match those identified by

human learners in laboratory experiments (Shafto et al., 2006).

Learning from relations.

Traditional approaches to categorization treat each entity individually, simply in terms of the

features it has. Richer semantic structure can be found if we can develop methods for effectively learning

from complex forms of relational data, where categories are defined in terms of the relations between one

another. Nonparametric Bayesian models can be used to solve this problem, discovering systems of related

concepts from heterogeneous data sources. One such model, the infinite relational model (Kemp et al.,

2006), identifies clusters of objects that not only share similar features, but also participate in similar

relations. Given data involving one or more types of entities, their attributes, and relations among them,

this model can discover the kinds of entities in each set and the relations between kinds that are possible or

likely. For instance, a data set for consumer choice could be characterized in terms of these relations:

which consumers bought which products, which features are present in which products, which demographic

attributes characterize which users, and so on. The model simultaneously discovers how to cluster each

type of entity as well as the regularities in how these clusters are related (e.g., consumers in class X tend to

buy products in class Y).

The nonparametric nature of the infinite relational model allows it to automatically discover the

appropriate number of categories to be used in describing each type of entity, and to grow the complexity

of these categorization systems as new data warrant. This ability to grow representations of appropriate

complexity as the observed data grow is especially important in relational settings. When the data concern

how entities of different types interact, a choice about how finely to group entities of one type interacts with

the analogous choices for all other types those interact with. For example, grouping one type too coarsely

may lead to overly fine-grained representation of another type it interacts with. The automatic discovery of
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clusters of the appropriate granularity produced by this model also provides a way to explain how people

might form categories of objects based on the causal relations that hold between them, providing a basic

step towards learning a more sophisticated relational theory of a domain (Kemp et al., in press).

Implementation

Nonparametric Bayesian models present a basic challenge for the learner and the modeler:

performing probabilistic inference about the values of the latent variables in the model (such as the

partitions of stimuli used in the DPMM). Psychological research using these models has explored three

algorithms for probabilistic inference. One algorithm, which we call the local MAP algorithm, was

introduced by Anderson (1990) and motivated by psychological considerations. The two other algorithms –

Gibbs sampling and particle filtering – draw on the statistics literature, and were first applied in a

psychological setting by Sanborn, Griffiths, and Navarro (2006). For simplicity, we present these three

algorithms just for the DPMM, but the same principles apply when they are used with other models.

The local MAP algorithm

The local MAP algorithm (short for local maximum a posteriori probability) approximates the sum

in Equation 4 with just a single partition of the N objects, zN . This partition is selected by assigning each

object to the highest probability cluster as it is observed. The posterior probability that stimulus i was

generated from cluster k given the features of all stimuli, along with the cluster assignments zi−1 for the

previous i− 1 stimuli is

p(zi = k|xi, zi−1,xi−1) ∝ p(xi|zi = k, zi−1,xi−1)p(zi = k|zi−1) (5)

where p(zi = k|zi−1) is given by Equation 3. Under the local MAP algorithm, xi is assigned to the cluster

k that maximizes Equation 5. Iterating this process results in a single partition of a set of N objects. The

local MAP algorithm approximates the complete joint distribution using only this partition.

To illustrate the local MAP algorithm, we applied it to the simple example of sequentially presented

stimuli in Figure 1. As mentioned above, each stimulus is parameterized by three binary features and the

likelihood p(x|z) is calculated using multinomial distributions that are independent for each feature, which

is the standard approach for modeling binary data (for details, see Anderson, 1990; Neal, 1998; Sanborn
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et al., 2006). The local MAP algorithm initially assigns the first observed stimulus to its own cluster.

When the second stimulus is observed, the algorithm generates each possible partition: either it is assigned

to the same cluster as the first stimulus or to a new cluster. The posterior probability of each of these

partitions is calculated and the partition with the highest posterior probability is always chosen as the

representation. After the third stimulus is observed, the algorithm produces all possible partitions

involving the third stimulus, assuming that the first two stimuli are part of the same cluster. Note that not

all possible partitions of the three stimuli are considered, because the algorithm makes an irrevocable

choice for the partition of the first two stimuli and the possible partitions on later trials have to be

consistent with this choice. The local MAP algorithm will always produce the same final partition for a

given sequential order of the stimuli, assuming there are no ties in the posterior probability.

Unfortunately, although this approach is fast and simple, the local MAP algorithm has some odd

characteristics. In particular, the quality of the approximation is often poor, and the algorithm violates the

principle of exchangeability discussed above. Figure 4 shows that the posterior distribution over partitions

produced by the local MAP is very different from the distribution it attempts to approximate. The local

MAP results in a single outcome, while the exact posterior distribution has some non-zero probability for

every outcome. The partition the local MAP selects depends on the order in which the stimuli are

observed, and this order dependence is perhaps stronger than order dependence human participants display

(see Sanborn et al., 2006).

Gibbs sampling

The approximate inference algorithm most commonly used with the DPMM is Gibbs sampling, a

Markov chain Monte Carlo (MCMC) method (see Gilks, Richardson, & Spiegelhalter, 1996). This

algorithm involves constructing a Markov chain that will converge to the distribution from which we want

to sample, in this case the posterior distribution over partitions. The state space of the Markov chain is the

set of partitions, and transitions between states are produced by sampling the cluster assignment of each

stimulus from its conditional distribution, given the current assignments of all other stimuli. The algorithm

thus moves from state to state by sequentially sampling each zi from the distribution

p(zi = k|xi, z−i, ,x−i) ∝ p(xi|zi = k, z−i,x−i)p(zi = k|z−i) (6)
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where z−i refers to all cluster assignments except for the ith.

Equation 6 is extremely similar to Equation 5, although it gives the probability of a cluster based on

all of the trials in the entire experiment except for the current trial, instead of just the previous trials.

Exchangeability means that these probabilities are actually computed in exactly the same way: the order

of the stimuli can be rearranged so that any particular stimulus is considered the last stimulus. Hence, we

can use Equation 3 to compute p(zi|z−i), with old clusters receiving probability in proportion to their

popularity, and a new cluster being chosen with probability determined by α. The other terms reflect the

probability of the features and category label of stimulus i under the partition that results from this choice

of zi, and depend on the nature of the features.

The Gibbs sampling algorithm for the DPMM is straightforward (Neal, 1998) and is illustrated for

the simple example in Figure 1. First, an initial assignment of stimuli to clusters is chosen, with a

convenient choice being all stimuli assigned to a single cluster. Unlike the local MAP algorithm, Gibbs

sampling is not a sequential algorithm; all stimuli must be observed before it can be used. Next, we choose

a single stimulus and consider all possible reassignments of that stimulus to clusters, including not making

a change in assignments or assigning the stimulus to a new cluster. Equation 6 gives the probability of each

partition and one of the partitions is sampled based on its posterior probability, making this algorithm

stochastic, unlike the local MAP. The stochastic nature of the algorithm is evident in the example in

Figure 3, because the final circled assignment has lower probability than the alternatives. The example

shows a single iteration of Gibbs sampling, in which each stimulus is cycled through and reassigned. The

algorithm goes through many iterations, with the output of one iteration the input to the next. Since the

probability of obtaining a particular partition after each iteration depends only on the partition produced

on the previous iteration, this is a Markov chain.

After enough iterations for the Markov chain to converge, we begin to save the partitions it

produces. The partition produced on one iteration is not independent of the next, so the results of some

iterations are discarded to approximate independence. The partitions generated by the Gibbs sampler can

be used in the same way as samples from the posterior distribution p(zN |xN ). Averaging over these

samples thus provides a way to approximate the sum over zN in Equation 4 without needing to calculate

the posterior probability of all partitions. Over 10,000 iterations the Gibbs sampler produces a good

approximation to the exact posterior, as shown in Figure 4.
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Particle filtering

Particle filtering is a sequential Monte Carlo technique that can be used to provide a discrete

approximation to a posterior distribution that can be updated with new data (Doucet, de Freitas, &

Gordon, 2001). Each “particle” is a partition z(`)
i of the stimuli from the first i trials, where ` is the index

of the particle. Unlike the local MAP algorithm, in which the posterior distribution is approximated with a

single partition, the particle filter uses m partitions. Summing over these particles gives us an

approximation to the posterior distribution over partitions.

p(zi|xi) ≈
1
m

m∑
`=1

δ(zi, z
(`)
i ) (7)

where δ(z, z′) is 1 when z = z′, and 0 otherwise. If Equation 7 is used as an approximation to the posterior

distribution over partitions zi after the first i trials, then we can approximate the distribution of zi+1 given

the stimuli xi in the following manner:

p(zi+1|xi) =
∑
zi

p(zi+1|zi)p(zi|xi)

≈
∑
zi

p(zi+1|zi)
1
m

m∑
`=1

δ(zi, z
(`)
i )

=
1
m

m∑
`=1

p(zi+1|z(`)
i ) (8)

where p(zi+1|zi) is given by Equation 3. We can then incorporate the information conveyed by the features

and label of stimulus i + 1, arriving at the approximate posterior probability

p(zi+1|xi+1) ∝ p(xi+1|zi+1,xi)p(zi+1|xi)

≈ 1
m

m∑
`=1

p(xi+1|zi+1,xi)p(zi+1|z(`)
i ) (9)

The result is a discrete distribution over all the previous particle assignments and all possible assignments

for the current stimulus. Drawing m samples from this distribution provides us with our new set of

particles.

The particle filter for the simple example from Figure 1 is illustrated in Figure 3. The particle filter

for the DPMM is initialized with the first stimulus assigned to the first cluster for all m particles, in this
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case m = 2. On observing each new stimulus, the distribution in Equation 9 is calculated, based on the

particles sampled in the last trial. Like the local MAP, the particle filter updates the partition as each new

stimulus is observed, and like the local MAP, only new partitions that are consistent with the previous

choices made by the algorithm are considered. This consistency can be seen in the potential partitions

when the third stimulus is observed in Figure 3: each descendant is consistent with the partition choices

made by its ancestor. The particle filter differs in two ways from the local MAP algorithm. The first is

that the choice of new partitions is stochastic instead of deterministic. The particle filter algorithm

samples new partitions based on their posterior probabilities instead of always selecting the partition with

the maximum probability. Stochastic selection generally produces more accurate approximation of the

exact distribution, which can be seen in Figure 4. A particle filter with m = 1 particles is equivalent to the

local MAP algorithm, except that the new partition is sampled instead of deterministically selected. Over

1,000 runs of the algorithm, the single-particle particle filter produces a far closer approximation to the

exact distribution than the local MAP. The second difference is that multiple particles means that multiple

partitions can be used instead of the single partition passed forward by the local MAP. The m partitions

are selected without regard for ancestry, allowing a partition that was selected for the early observations to

die out as the descendants of other partitions replace it. A large enough set of particles will prevent this

algorithm from being sent down the wrong track, which is a danger for the local MAP. The particle filter in

Figure 4 used 10 particles with 1,000 repetitions. The results of this algorithm are indistinguishable from

the exact solution, and are both a better approximation than the local MAP or the single-particle particle

filter.

Example

We present the following example to demonstrate how nonparametric models can capture certain

aspects of human categorization that are not well-explained by either prototype or exemplar models. A

more detailed analysis of this example can be found in Griffiths et al. (2007). In an experiment conducted

by Smith and Minda (1998), a prototype model was found to provide a better explanation for human

performance on a categorization task during the early stages of learning, while an exemplar model was

found to be a better fit to the later stages. The authors presented these findings to dispute the sentiment

that exemplar models provided a dominant account of human categorization over prototype models.

Instead, they argued, people seemed to use strategies corresponding to both of these models, perhaps
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shifting between them over time. Due to the natural ability of the HDP to interpolate between exemplar-

and prototype-style representations as warranted by the observed data, it seems a natural candidate to

explain the results found by Smith and Minda.

We focus on the non-linearly separable structure explored in Experiment 2 of Smith and Minda

(1998). The experiment consisted of a series of trials in which 16 participants were asked to guess whether

six-letter nonsense words belonged to Category A or Category B. Each letter of the words took on one of

two possible values, producing the binary feature representations of the two categories shown in Table 1.

Each category contains one prototypical stimulus (000000 vs. 111111), five stimuli with five features in

common with the prototype, and one stimulus with only one feature in common, which we refer to as an

“exception”. No linear function of the features can correctly classify every stimulus, meaning that a

prototype model will not be able to distinguish between the categories exactly. Participants received

feedback after each trial and were tested a total of 40 times on each of the 14 stimuli. The trials were split

into 10 segments, each consisting of 4 trials of each of the 10 stimuli. The results of the experiment are

shown in Figure 5 (a). The exceptions were initially identified as belonging to the wrong category, with

performance improving over time.

As in the previous example, in applying the computational models, we can use a Beta prior

distribution for each dimension of each cluster, allowing us to integrate out the parameters of each cluster

to obtain a tractable distribution for p(x|z). The three models that were tested, a prototype model, an

exemplar model, and the DPMM, were exposed to the same training stimuli as the human participants and

used to categorize each stimulus after each segment of four exposures to the stimuli. The inferences of the

prototype and exemplar models can be computed exactly, but because the DPMM involves a summation

over all the partitions of the stimuli into clusters, we resorted to the Gibbs sampling procedure described

above. The results of the three models are plotted in Figure 5. Only the DPMM captures the cross-over

effect for the exception stimuli, where they are categorized incorrectly at first and are learned gradually

over time. This effect is due to the DPMM’s ability to shift its representation between the prototype and

exemplar styles. At first, it is more likely to use a single cluster to represent each category, as a prototype

model would. After repeated exposure to the stimuli, the DPMM becomes more likely to split the

exception stimuli into their own individual clusters, moving closer to an exemplar representation.
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Relationship to other models

The relationships between Bayesian and other approaches can be described in terms of a few key

concepts. In the first instance, the Bayesian framework described sits at the computational level of

analysis. As with the machine learning approach suggested by Iba and Langley, we chose to phrase the

problem in probabilistic language, but the model can be converted into an MDL style description (Pothos,

Chater & Hines) without difficulty. The important similarity here is that all three models share the goal of

expressing human inferences primarily in terms of the statistical characteristics of the problem to be

solved. This is in sharp contrast to Ashby, Paul and Maddox, for instance, who describe the only model in

this volume that has strong ties to the neural implementation level of analysis. However, the majority of

the other chapters operate at the algorithmic level, and rely heavily on mechanistic psychological processes.

Process assumptions can operate at a representational level, as is the case for prototype abstraction (Minda

& Smith) and exemplar storage (Nosofsky), but can also describe learning rules such as backpropagation

(Kruschke) and Hebbian learning (Harris & Rehder). Bayesian theories have typically stayed away from

making strong commitments at the algorithmic level, or exploring the cognitive consequences of different

algorithms for Bayesian learning and inference, but this is changing. As described in the section on

implementation, we suggest that particle filtering, importance sampling and other methods may provide

new possibilities for algorithmic-level Bayesian modeling that can bridge the gap between rational analyses

and psychological processes.

Several of the contributions relate to our chapter through variations on the theme of hierarchical

learning. The HDP model is hierarchical in the sense that it infers a generic clustering of entities in the

environment in addition to the various category-specific distributions. It is via this mechanism that the

HDP unifies prototypes (Minda & Smith) and exemplars (Nosofsky) with the original rational model

(Anderson, 1991) and other mixture models, and the clustering of stimuli within categories is similar to

other models of categorization such as SUSTAIN (Love et al., 2004). However, the idea has considerably

more generality. In a related line of work, Bayesian theories exploit the fact that the representations

learned at the top level act as priors over category distributions at the low level. In this respect, there is a

strong link to the learned hierarchies in the Iba and Langley contribution and to the prior knowledge

constraints described by Harris and Rehder: there are now several Bayesian models that focus on how such

constraints can be learned from experience (e.g., Kemp, Perfors, & Tenenbaum, 2007; Kemp &
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Tenenbaum, 2008; Shafto et al., 2006). As an example, Kemp et al. (2007) show how hierarchical learning

provides an explanation for how children learn inductive biases about object categories. Over shorter time

scales, learned selective attention (Kruschke) can also be considered to exemplify the same kind of learning,

insofar as people learn the assignments of items to specific categories, as well as general knowledge about

the extensions of categories along different dimensions. Hierarchical learning accounts for standard

attentional phenomena such as the condensation-filtration effect (Navarro, 2006), as well as how people can

make inferences about entirely novel categories (Perfors & Tenenbaum, 2009). Within the Bayesian

framework, these things are all characterized as different examples of hierarchical learning, though defined

over different domain sizes, complexities and time scales.

Other contributions raise different issues. The multiple system model described by Ashby, Paul and

Maddox raises the question of how best to unify rule-based learning with graded, probabilistic

categorization models from a computational perspective. The HDP model described here is probabilistic,

though other Bayesian models have a rule-like character through their reliance on deterministic

“consequential sets” (Shepard, 1987; Tenenbaum & Griffiths, 2001; Navarro, 2006), and others use formal

grammars to place priors over logical rules (Goodman, Tenenbaum, Feldman, & Griffiths, 2008). An open

question in this context is how to integrate these different kinds of mental representation, or whether

deterministic rules and probabilistic categories should be left as two fundamentally distinct learning

systems. Some prospects for unification exist. In a different context Maas and Kemp (2009) use priors

constructed to induce a bias towards determinism, while Jaynes (2003) argues that some “improper” priors

mimic the kind of one-shot learning of logical rules that occurs in the physical sciences. Nevertheless, this

remains an avenue for future work.

The simplicity model (Pothos, Chater & Hines) raises a different question in relation to the HDP

model, regarding the nature of Ockham’s razor. The scheme used to index partitions is a two-part code,

encoding the number of categories k using the same number of bits regardless of the value of k. Via the

equivalence between codelength functions and probability distributions (e.g. Grünwald, 2007) this

translates to a uniform prior over the number of categories k. Similarly, all partitions of the same

cardinality are equally likely. This is very different to the prior over partitions in the Dirichlet process,

which has a bias toward small k, and is non-uniform even for given k. The Dirichlet process supplies an

explicit Ockham’s razor (simplicity through the prior), whereas the simplicity model prefers fewer
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categories only to the extent that a simpler clustering provides the better account of the data (simplicity

through the likelihood). Although in practice the two approaches often behave similarly (e.g., compare Lee

& Navarro, 2005 to Navarro & Griffiths, 2008), there is a deeper theoretical question at stake. Do we

possess genuine pre-existing biases to prefer simple categorizations, or do our preferences emerge because

simple models just work better? This is another open question for future research.

Future directions

Nonparametric Bayesian models provide a way to analyze how an ideal learner would solve

categorization problems that unifies previous models and creates the opportunity to define new models of

human category learning. The “nonparametric” aspect of this approach provides flexibility, making it

possible to entertain hypotheses about the structure of categories that have unbounded complexity, while

the “Bayesian” aspect provides a framework for making statistical inferences about how much complexity

is warranted given the observed data. We anticipate two important future directions for this approach to

category learning, each building on one of these two aspects of the approach.

The first future direction is expanding the scope of nonparametric Bayesian models. Many of the

models discussed in this chapter focus on the traditional task of learning to classify objects as belonging to

a small number of non-overlapping categories. Despite the long history of research into human

categorization, there still exist many behaviors and techniques used by people in category learning settings

that have yet to be formally studied and modeled. These include the transfer of information from one

category to another to increase learning rate, the automatic inference of hierarchically-organized category

taxonomies, and the exploitation of logical (AND/OR) relationships between categories. In future work, we

intend to experimentally study each of these behaviors and model them using extensions of the

nonparametric Bayesian models considered here. For example, the HDP model with both α and γ positive

and finite allows each category to be modeled as a Dirichlet process mixture model with the underlying

clusters being shared among all categories, serving as a model for transfer learning. Combining a prior

distribution over tree structures with the natural formulation of the HDP model on trees could serve as a

model for the automatic inference of taxonomies. Finally, we envision an extension of the HDP which

allows each category to be algebraically related to the others; this model could capture the effects of telling

a learner that categories have certain logical relationships to each other.

The second future direction is capturing the effects of prior knowledge on category learning.
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Psychological research has shown that people are strongly affected by their knowledge of the world when

learning new categories, with categories that are consistent with prior knowledge being easier to learn.

These effects are obtained in experiments that use meaningful stimuli that draw on the real-world

knowledge of human learners, such as intuitions about the factors that influence the inflation of balloons

(Pazzani, 1991), the properties of different types of buildings (Heit & Bott, 2000), the definition of honesty

(Wattenmaker, Dewey, Murphy, & Medin, 1986), and the properties of vehicles (Murphy & Allopenna,

1994). Only a small number of computational models of knowledge effects in category learning exist

(Rehder & Murphy, 2003; Heit & Bott, 2000), and these models have been developed with the more

traditional psychological goals of understanding the mechanisms underlying this process. Developing

probabilistic models that can account for knowledge effects in category learning provides the opportunity

to discover how such knowledge should be used, and to generalize the resulting insights to develop better

machine learning systems. Thinking about categorization in terms of density estimation lays the foundation

for exploring these deeper questions about human cognition, and the opportunity to draw on tools from

artificial intelligence and statistics in formalizing the prior knowledge that guides category learning.
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Footnotes

1Throughout this chapter, we use boldface to indicate that a variable is a vector (e.g., xN ), and and

italics to indicate that a variable is a scalar (e.g., xi).
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Table 1
Categories A and B from Smith & Minda (1998).

Category Stimuli
A 000000, 100000, 010000, 001000, 000010, 000001, 111101
B 111111, 011111, 101111, 110111, 111011, 111110, 000100
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Figure Captions

Figure 1. Example stimuli for a categorization experiment. Each stimulus is presented on one of three

trials, and possesses three binary features.

Figure 2. Illustration of the hierarchical Dirichlet process. The prior probability for each cluster at the

lower level is based on the number of category examples in that cluster. If a cluster is selected from the

higher level, the prior probability of clusters is based on the number of categories by which they have been

selected. Completely new clusters can only be created at the higher level.

Figure 3. Illustration of the local MAP, particle filtering, and Gibbs sampling approximation algorithms.

All three algorithms are applied to the stimuli shown in Figure 1. Each algorithm starts on the left side

with an initial partition of the stimuli. Each box is a partition that contains one or more stimuli and the

presence of a separating vertical line indicates that the stimuli belong to different clusters. The children of

the initial (leftmost) partition are the partitions under consideration in the next step of each algorithm.

These children partitions are all the possible reassignments of the stimulus marked by the arrow. Numbers

underneath each partition show the posterior probability of that partition. Not all possible paths are

followed, with Gibbs sampling and particle filtering choosing partitions to continue stochastically, while

local MAP always chooses the partition with the maximum posterior probability. The partitions circled in

red are the algorithms’ outcomes.

Figure 4. Results of the approximation algorithms compared to the exact posterior. The five bar groupings

correspond to the five possible partitions of the three stimuli in Figure 3. The bars within each grouping

correspond to the approximation algorithms outlined in the text. Standard error bars are provided for the

Gibbs sampling, particle filter, and single-particle particle filter algorithms.

Figure 5. Human data and model predictions for Smith & Minda (1998, Experiment 2). (a) Human

performance. (b) Prototype model. (c) Exemplar model. (d) DPMM. For all panels, white plot markers

are stimuli in Category A, and black are in Category B. Triangular markers correspond to the exceptions

to the prototype structure, i.e., stimuli 111101 and 000100, respectively.
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