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Abstract

Psychological models for two-choice decision tasks typically
model the probability that a particular response is made at
time t via the first-passage time to an absorbing boundary
for some stochastic process. In contrast to the most com-
monly used models which use classical random walks for the
underlying process, a recent paper by Busemeyer, Wang, &
Townsend (2006) proposed that quantum walks may provide
an interesting alternative. In this paper, we extend this work
by introducing a class ofpartially-coherent quantum walk
modelsthat can be applied to human two-choice tasks. The
models trace out a path from quantum to classical models,
preserving some of the desirable features of both. We discuss
the properties of these models, and the potential implications
for modeling simple decisions.

Introduction
The hypothesis that human induction and decision-making
can exploit quantum mechanical phenomena is one that has
a great deal of intuitive appeal. Perhaps the currently most
famous and controversial version of this hypothesis is Pen-
rose’s (1989) suggestion that mathematical insight relies on
quantum mechanical effects. Although a number of aspects
of that specific version of the hypothesis are controversial
(see Searle 1997), there remains a certain face validity to
the more general idea. In particular, one of the most ba-
sic findings from quantum computing is that it is possible
to exploit the parallelism inherent in quantum mechanics to
speed up a number of computational problems (Shor 1994,
1997; Grover 1997). Since human decision processes unfold
over time, it is plausible to suggest that an evolutionary ad-
vantage would accrue to decision-makers that can make ef-
fective use of quantum mechanical effects. Of course, many
questions need to be answered before we can determine with
confidence whether or not this advantage has in fact been
achieved by living organisms. Indeed, at least four impor-
tant scientific perspectives have significant bearing on these
questions, namely those of psychology, biology, computer
science and physics (see Littet al. 2006, for instance). This
paper is concerned primarily with a psychological perspec-
tive but makes use of insights from the other three disci-
plines.

From the psychological perspective, one of the main is-
sues with which we must be concerned is the construction

of formal models that make predictions about human be-
haviour. That is, if the brain can make use of quantum
phenomena in its processing, or (in a weaker formulation)
obeys dynamical laws that reflect the mathematical struc-
ture of quantum mechanics, what patterns would one expect
to observe in human behaviour? In this paper, we adopt
the weaker “functionalist” perspective, and consider psy-
chological models that use quantum mechanical principles.
The stronger claim, that human information processing gen-
uinely makes use of quantum physical phenomena, is be-
yond the scope of this paper.

In a pioneering paper, Busemeyer, Wang, & Townsend
(2006) explored the possibility of a formal characterisa-
tion of human decision making processes based on quan-
tum mechanical principles. Their model was constructed
as a quantum mechanical analogue of a standard random
walk model (e.g., Stone 1960) for human decisions and de-
cision latencies. They found that this quantum mechanical
model could reproduce some of the basic findings in the
literature on human decision-making. In this paper we ex-
tend this work in two respects. Firstly, we consider a more
general quantum walk that has its origins in computer sci-
ence and physics (Aharonov, Davidovich, & Zagury 1993;
Meyer 1996). We cast this quantum walk into a linear
systems framework (Fusset al. 2007) that allows us to
demonstrate the similarities to and differences from a clas-
sical random walk. Secondly, we employ a density matrix
formalisation of the walk, allowing us to extend the quan-
tum walk framework to accommodate the influence of noise
on the evolution of the walk. This second aspect produces
partially-coherent quantum walk models, which subsume
both classical and quantum walks as special cases. When
high levels of noise are injected into the walk, the quan-
tum state decoheres completely, and the model reduces to
a Bernoulli random walk. When the noise levels are set to
zero, we obtain a pure quantum walk model. As a result, we
arrive at a model for human decision making that allows us
to infer the extent to which quantum behaviour is manifest.

The structure of this paper is as follows. In the first sec-
tion, we introduce two walk processes, one classical and
one quantum, and discuss their interpretations as linear sys-
tems. We then discuss the use of absorbing boundaries as
psychological decision criteria, and the calculation of the
first passage time distributions for both processes. Having
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Figure 1: The transition diagram for a Bernoulli random
walk. Each node corresponds to a possible locationx for the
walk, and each link is labelled by the amount of probability
mass that transfers between locations at each time point.

constructed these special cases, we then introduce the more
general partially-coherent walks, and discuss three plausible
noise processes. Finally, we provide a brief discussion of the
behaviour of the first passage time distributions for partially-
coherent walks, as a function of the amount and type of noise
involved.

Sequential Sampling Models,
Classical and Quantum

Our approach, like that of Busemeyer, Wang, & Townsend
(2006), is based on a general class of sequential sampling
models commonly used to describe human evidence-accrual
and decision-making (e.g., Ratcliff & Smith 2004). The cen-
tral assumption of such models is that the environment pro-
vides people only with noisy stimulus representations, and
so to make accurate decisions people draw successive sam-
ples from this representation until somedecision threshold
is reached. This class of models (see, e.g., Ratcliff 1978;
Vickers 1979; Smith & van Zandt 2000) draws heavily from
sequential analysis (Wald 1947) and stochastic processes
(Smith 2000), and is at present the best formal framework
available for modeling decision accuracy, latency, and sub-
jective confidence in simple decision tasks.

Bernoulli Random Walks
The simplest kind of sequential sampling model relies on
Bernoulli sampling in discrete time. At each time point, the
observer accrues a single piece of evidence drawn from a
Bernoulli distribution: with probabilityq, the evidence fa-
vors responseA, and with probability1 − q it favors re-
sponseB. The observer draws samples until some decision
threshold is reached; typically, when the number of samples
favoring one option exceeds the number of samples favor-
ing the other option by some fixed amount. A procedure of
this kind defines a discrete random walk on the line, taking
a step up with probabilityq and a step down with probabil-
ity 1 − q. Commonly, one applies a variant of the so-called
“assumption of small steps” (see Luce 1986) and takes the
limit to a continuous Wiener diffusion model (Feller 1968;
Ratcliff 1978). For conceptual simplicity, however, we re-
tain the original Bernoulli model.

Formally, in the discrete Bernoulli random walk, we con-
sider the evolution of the probabilitydistributionp(x, t) ∈ R
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Figure 2: The transition diagram for a two-state quantum
walk. Each node corresponds to one element of the state
vector, with the top row corresponding to the right-handed
elements, and the bottom row to the left-handed elements.
Each node is labelled with its locationx. The coefficients
r, r∗, s ands∗ refer to the amount of probability amplitude
that transfers between different elements (in this illustration,
we setk = 0 for simplicity).

for discrete timest ≥ 0, and possible locationsx ∈ Z, from
an initial distribution over locationsp(x, 0). The dynamics
of this walk evolve according to the linear difference equa-
tion

p(x, t+ 1) = qp(x− 1, t) + (1 − q)p(x+ 1, t), (1)

whereq ∈ [0, 1]. The transition diagram for this difference
equation is given in Figure 1, and illustrates how the prob-
ability mass is transferred between successive time points.
Since it is a linear system, Equation 1 can be written in the
matrix form

p(t+ 1) = Mp(t), (2)

where the transpose of the probability state vector is

pT(t) = (. . . p(−2, t), p(−1, t), p(0, t),
p(1, t), p(2, t), . . .), (3)

and the one-step time evolution matrix is

M =




· · · · · ·
· 0 1 − q 0 0 ·
· q 0 1 − q 0 ·
· 0 q 0 1 − q ·
· 0 0 q 0 ·
· · · · · ·



. (4)

Note that the columns ofM sum to 1, so as to preserve the
constraint that probabilities sum to 1 at all times (i.e., isom-
etry).

Although it is somewhat unnecessary for Bernoulli walks,
since analytic expressions exist for most of their interest-
ing psychological properties (Feller 1968), this kind of ma-
trix formulation is very useful in general. As discussed by
Diederich & Busemeyer (2003), adopting simple matrix rep-
resentations for evidence accrual processes serves a useful
pragmatic goal, insofar as it simplifies the subsequent cal-
culation of model predictions in those cases where analytic
expressions do not exist.
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Figure 3: The distribution of a Hadamard walk, measured at
t = 50. The initial state of the walk places probability am-
plitude1/2 for both chiralities at the locationx = 50, and
amplitude1/2

√
2 at both chiralities forx = 49 andx = 51

(essentially an analogue of the Bernoulli case with probabil-
ity 1/2 in the middle location, and 1/4 on either side).

Quantum Walks
The Bernoulli random walk is a classical model: it traces
out a single path on the line. However, in a quantum system
there is an inherent parallelism, insofar as (in the absence
of measurement) the evidence-accrual process now traces
out multiple paths simultaneously. Consequently, the vari-
ance of a quantum walk increases quadratically with time in
contrast to a linear increase of the variance for a Bernoulli
random walk. Hence we would expect a quantum decision
maker to make decisions considerably faster than the corre-
sponding classical decision maker. In this section, we de-
scribe the basic quantum walk model.

Quantum walks differ from classical ones in two main re-
spects: firstly, although the dynamics are still linear, they
are described with respect to probability amplitudes (com-
plex numbers whose squared absolute values sum to 1), not
probabilities (real numbers that sum to 1); and secondly in
order to preserve isometry on the probabilities, the opera-
tor must be unitary. Unitarity imposes strong constraints on
the kinds of dynamics that may be considered, and as a con-
sequence, quantum walks in which the particle has only a
locationx ∈ Z are extremely uninteresting. Typically, this
is addressed by allowing the particle to have achirality (left
or right) as well as a location. The state of the walk at time
t is then described by the spinor

ψ(x, t) =
(
ψR(x, t)
ψL(x, t)

)
, (5)

whereψR(x, t) ∈ C is a complex-valued scalar that de-
scribes the probability amplitude in statex with right-
chirality at timet. A natural analogue of the Bernoulli walk
for this system involves some probability amplitude mov-
ing from the locationx to the locationsx + 1 or x − 1,
but with the chirality changing as well. More precisely,
the dynamics of the state evolve according to the differ-
ence equations (Aharonov, Davidovich, & Zagury 1993;
Meyer 1996)

ψR(x, t+ 1) = eik [sψR(x− 1, t) + rψL(x− 1, t)]
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Figure 4: The transition diagram for an absorbing bound-
ary random walk. The structure differs from that in Figure 1
only in that the statesx = 0 andx = 1 do not send prob-
ability mass to other states: instead, all probability mass is
preserved in the self-transition links at each end of the dia-
gram.

ψL(x, t+ 1) = eik [−r∗ψR(x+ 1, t) + s∗ψL(x+ 1, t)] ,
(6)

where |r|2 + |s|2 = 1, s∗ is the complex conjugate ofs,
andk ∈ R. The structure of this walk is illustrated by the
transition diagram in Figure 2, which describes the one-step
evolution for the probability amplitudes, in the case where
k = 0. Notice that the coefficients controls the probability
amplitude that stays in the same chirality, with amplitudes
in the left chirality consistently moving leftward (i.e.,x de-
creases), and amplitudes in the right chirality moving right
(x increases). The coefficientr controls the “reversal” of the
chirality from left to right and vice versa. In order to illus-
trate the basic characteristics of this kind of quantum walk,
Figure 3 shows what happens when a so-called “Hadamard
walk” (whereeik = i ands = r = i/

√
2) is evolved for 50

time steps and then measured.

Decisions and First Passage Times
The development so far describes an evidence-accrual pro-
cess that (be it classical or quantum mechanical) evolves
without constraint onx ∈ Z. Psychologically, however,
sincex is interpreted as an evidence value, and time is of
the essence to the decision-maker, it is generally assumed
that oncex hits either0 or a, the evidence-accrual termi-
nates and a decision is made. Accordingly, both0 or a act as
absorbing boundaries, and the decision latency is described
by thefirst passage time distributionto the boundaries.

Bernoulli Random Walks

Not surprisingly, the classical case is straightforward: in or-
der to calculate the first passage times to absorbing bound-
aries atx = 0 andx = a we modify the Bernoulli random
walk to have the transition diagram shown in Figure 4. The
nodes atx = 0 andx = a will thus contain the cumulative
distribution of absorbed particles at a given time. Since we
are interested in first passage times it is convenient to relax
the requirement thatM produce an isometry by dropping
the self-transitions on the end nodes. They will then contain
the first passage time probability for that time. If we choose
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Figure 5: The transition diagram for a quantum walk with
absorbing boundaries, in which we seta = 4, and remove
the self-transition edges. In all other respects, the transition
structure mimics the one in Figure 2.

a = 4 then the one step time evolution matrix is

M =




0 1 − q 0 0 0
0 0 1 − q 0 0
0 q 0 1 − q 0
0 0 q 0 0
0 0 0 q 0


 . (7)

The model is completed by a choice of the initial state such
as

pT(0) = (0, 0, 1, 0, 0). (8)

Hence,p(0, t) is the first passage time distribution for the
x = 0 boundary andp(4, t) is the first passage time distri-
bution for thex = 4 boundary.

Quantum Walks
The absorbing boundary problem for quantum walks is a lit-
tle more subtle. We define the projection operators

Pe = |x ≤ 0〉 〈x ≤ 0| (9)

Pf = |0 < x < a〉 〈0 < x < a| (10)

Pc = |a ≤ x〉 〈a ≤ x| , (11)

wherePe projects from the Hilbert space containing the
spinorsψ onto its subspace with support[−∞, 0] and simi-
larly Pf projects onto the subspace with support(0, a) and
Pc projects onto the subspace with support[a,∞]. We con-
sider the problem where at each timet we make partial
measurements of the quantum walk with the operatorsPe

andPc. This effectively modifies the time evolution pro-
cess described by the transition diagram in Figure 2 to one
described by transition diagrams such as that in Figure 5,
where we have chosen the case wherea = 4 for simplicity.

We can write a matrix equation

ψ4c(t+ 1) = U4cψ4c(t) (12)

for the operations described by this transition diagram,
where

ψT
4c(t) = (ψR(0, t), ψL(0, t), ψR(1, t), ψL(1, t),

ψR(2, t), ψL(2, t), ψR(3, t), ψL(3, t),
ψR(4, t), ψL(4, t)), (13)
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Figure 6: First passage times to the two boundaries (with
a = 100) for the Hadamard walk in Figure 3.

and the one-step time evolution matrix is

U4c = eik




0 0 0 0 0 0 0 0 0 0
0 0 −r∗ s∗ 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 −r∗ s∗ 0 0 0 0
0 0 s r 0 0 0 0 0 0
0 0 0 0 0 0 −r∗ s∗ 0 0
0 0 0 0 s r 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 s r 0 0
0 0 0 0 0 0 0 0 0 0




.

(14)
We complete the matrix specification by defining an initial
state

ψT
4c(0) = (cR(0), cL(0), cR(1), cL(1), cR(2), cL(2),

cR(3), cL(3), cR(4), cL(4)). (15)

The first passage time distributions to the two boundaries
are then obtained by making the partial measurements cor-
responding to observation of the two absorbing states at each
time point,

p(0, t) = |ψR(0, t)|2 + |ψL(0, t)|2 (16)

p(4, t) = |ψR(4, t)|2 + |ψL(4, t)|2. (17)

So, for instance, the first passage time distributions for a
Hadamard walk (see Figure 3) can be easily computed, and
are illustrated in Figure 6.

Partially Coherent Quantum Walks
Since in psychology we are rarely confronted with pure sys-
tems of any kind, we would like to allow for the possibility
that our quantum walks decohere as a result of their inter-
action with their environment. Decoherence is one pathway
from quantum to classical systems so we expect our walks to
produce the quantum walk results for low decoherence and
the random walk results for high decoherence.

We formulate the partially coherent quantum walk in
terms of density matricesρ(x, t). The density matrix rep-
resentation for a quantum state is constructed by taking the
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Figure 7: The distribution of a free Hadamard walk (att =
50) with a small amount of phase damping (α = 0.1), and a
Gaussian distribution over start points (suitably discretised,
with meanx = 50 and standard deviation 5).

outer product of the spinor and its adjoint,

ρ(x, x′, t) = ψ(x, t)ψ†(x′, t). (18)

Thus theij-th cell of the density matrixρij(x, x′, t) is sim-
ply the productψi(x, t)ψ∗

j (x, t). Accordingly, the main di-
agonal elements ofρ are real-valued and non-negative, and
describe the probabilities (not amplitudes) associated with
a particular state. The “correlations” between the states
are represented by the off-diagonal elements of the matrix,
which are complex-valued.

When adopting the density matrix formulation, we begin
by constructing the initial state from the spinor, as follows:

ρ(x, x′, 0) = ψ(x, 0)ψ†(x′, 0). (19)

We then inject noise into the density matrix before applying
the time evolution operatorU. If we let ρ̃(x, x′, t) denote a
noise-corrupted density matrix at timet, then the evolution
of the system is described by,

ρ(x, x′, t+ 1) = Uρ̃(x, x′, t)U†, (20)

and we inject noise once more to arrive atρ̃(x, x′, t + 1),
the noise-corrupted density matrix at timet + 1. In order to
include absorbing boundaries at each stage we make partial
measurements of the noisy density matrix. In the example
with boundaries atx = 0 andx = 4 to obtain the first pas-
sage time probabilities at each time step we measure

p(0, t) = ρ0,0(0, 0, t) + ρ1,1(0, 0, t) (21)

and
p(4, t) = ρ0,0(4, 4, t) + ρ1,1(4, 4, t), (22)

noting that in doing so we collapse the first two and last two
columns and rows of the density matrix, in analogy with the
coherent case state functions.

Noise Processes
In the previous discussion, we were non-specific as to how
noise should be introduced into the pure quantum system. In
fact, there are a number of plausible candidates for psycho-
logical noise processes, anda priori it is difficult to choose
between them. Therefore, we have chosen to discuss three
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Figure 8: First passage times to the two boundaries (with
a = 100) for a phase-damped Hadamard walk with a mod-
erate amount of noise (α = 0.5). The dashed line shows
the corresponding first passage time for the fully-decoherent
case whereα = 1.0 (i.e., a Bernoulli walk).

possibilities (see Nielsen & Chuang 2000 for a broader dis-
cussion), each of which describes a way of calculatingρ̃
from ρ. In all cases, the basic approach is to apply noise
operatorsE0,E1, . . . ,Em to the density matrixρ, such that

ρ̃(x, x′, t) =
m∑

j=0

Ejρ(x, x′, t)E†
j. (23)

It is worth noting the noise and time-evolution operators can
be seen as two aspects to a single “noisy evolution”. That
is, by putting Equations 20 and 23 together, we can directly
describe the time evolution of the system using

ρ̃(x, x′, t+ 1) = U




m∑

j=0

Ejρ̃(x, x′, t)E
†
j


U†. (24)

Phase damping. The main noise process we will consider
is phase damping, a process that has been the subject of
much study and speculation. Of import to us is its candidacy
for the process responsible for the world around us appear-
ing classical. The operator formalism for phase damping
uses the following two matrices;

E0 =
[

1 0
0

√
1 − α

]
(25)

E1 =
[

0 0
0

√
α

]
, (26)

where for notational convenienceE0 and E1 are written
for a two state system. For larger systems, we construct
block diagonal matrices using these elements: for instance,
E0 would be constructed by placing copies of the matrix in
Equation 25 along the diagonal, and inserting zeros every-
where else. Since this means that only the main diagonal
and alternating elements of the first upper and lower diago-
nals can be non-zero, the noise process in our walk has direct
influence only on the chirality, not the location.

One of the first things to note about phase damping noise
is that a little noise goes a long way, particularly when



combined with uncertainty about the start point. Figure 7
shows the state of mildly phased-damped Hadamard walk
(α = 0.1) at timet = 50, in which the initial distribution
p(0) is Gaussian, with meanx = 50 and standard deviation
5. The overall shape is very similar to the pure walk illus-
trated in Figure 3, but the high-frequency oscillations have
all been smoothed out, leaving a simple bimodal distribu-
tion. In short, a small amount of noise suffices to remove
the most psychologically-implausible multimodalities in the
walk.

The second observation to note is that, while a small
amount of noise introduces a lot of smoothing, large changes
to the first-passage time distributions are noticeable even
with a substantial amount of decoherence. To illustrate this,
Figure 8 plots the first passage time distributions forα = 0.5
against the corresponding fully-decoherent case (α = 1.0;
equivalent to a Bernoulli walk). Even at moderate to large
amounts of noise, the partially-coherent walk achieves a
substantial speed-up relative to its classical counterpart.

Amplitude damping. The second type of noise we con-
sider isamplitude damping, and we discuss two distinct va-
rieties. The first version arises when a quantum system is
coupled with the vacuum, and is referred to asspontaneous
decay. The operator formalism for amplitude damping via
spontaneous decay is

E0 =
[

1 0
0

√
1 − α

]
(27)

E1 =
[

0
√
α

0 0

]
. (28)

An example of amplitude damping is given in Figure 9.
As with the previous phase-damped example, a moderate
amount of noise has been injected into the walk. In this case,
however, the resulting first passage times are bimodal at the
right boundary, illustrating that the partially-coherent walk
can produce some predictions that are qualitatively differ-
ent in character to the Bernoulli walk. The figure also il-
lustrates the fact that one needs to take care when making
claims about the characteristics of such processes: this plot
is based on a (non-Hadamard) quantum walk that is in fact
symmetric in the absence of noise.

The more general version involves decay to a thermal sys-
tem rather than to the vacuum. The operators for generalised
amplitude damping are,

E0 =
√
p

[
1 0
0

√
1 − α

]
(29)

E1 =
√
p

[
0

√
α

0 0

]
(30)

E2 =
√

1 − p

[ √
1 − α 0
0 1

]
(31)

E3 =
√

1 − p

[
0 0√
α 0

]
. (32)

This noise model applies to systems where relaxation pro-
cesses couple the quantum system to a system that is in
thermal equilibrium at a temperature that is generally much
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Figure 9: First passage times to the two boundaries (with
a = 100) for an amplitude-damped (α = 0.2) walk with
k = 0, r = −i/

√
2 ands = 1/

√
2.

higher than the quantum system. A useful physical anal-
ogy for brain processes decaying via this mechanism is that
of nuclear magnetic resonance quantum computation where
the spin states relax viaT1 processes coupling them to their
surrounding lattice.

Depolarisation. Our final noise type isdepolarisation.
Though we do not discuss it in detail, this kind of noise is
illustrative of noise models considered by quantum commu-
nication and computing research. The operator formalism
for depolarisation relies on the following four matrices,

E0 =

√
1 − 3α

4

[
1 0
0 1

]
(33)

E1 =
√
α

4

[
0 1
1 0

]
(34)

E2 =
√
α

4

[
0 i
−i 0

]
(35)

E3 =
√
α

4

[
1 0
0 −1

]
. (36)

The second (E1) and last (E3) operators correspond toqubit
bit flip andphase fliperrors respectively while the middle
one is a combination of the two. It is interesting to note that
phase flip noise is equivalent to phase damping noise.

The Behaviour of Partially-Coherent Walks
As discussed previously, our primary aim in this paper is to
extend the psychological theory developed by Busemeyer,
Wang, & Townsend (2006), and illustrate how injecting
noise into the walk gives rise to partially-coherent walks that
preserve the desirable characteristics of their classical coun-
terparts, while retaining some of the interesting properties
of the pure quantum walks. While the psychological the-
ory is not as-yet fully developed, it is worth discussing the
kinds of empirical data patterns that the partially-coherent
walks are able to capture. To illustrate this, the left panels
of Figure 10 show the first passage time distributions for a
phase-damped Hadamard walk at several different levels of
noise, while the right panels show the corresponding dis-
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Figure 10: The effect of adding noise to a Hadamard walk witha = 100. On the left-hand side, phase-damping noise is added
to the walk, whereas on the right, the noise is amplitude-damping. The level of the noise increases from top to bottom; the
noise levelsα are 0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9 and 1.0. In all plots, the first passage time distributions are shown over the
range0 ≤ t ≤ 1000. As with previous figures, the black line plots the first passage times to the right boundaryx = a, and the
grey line plots hitting times for the left boundaryx = 0. In the uppermost panel, the noise levels are high enough to smooth out
the interference patterns in Figure 6, but low enough for “quantum tunnelling” effects to be observed, in which the absorbing
boundaries become partially reflecting, leading to a second mode appearing much later than the first.

tributions for an amplitude-damped walk. Notice that the
two noise processes have different effects on the distribu-
tions: phase-damping approaches classical behaviour much
faster, and in doing so suppresses the asymmetry of the
Hadamard walk, since the first passage distributions con-
verge. In contrast, while amplitude-damping approaches
classical behaviour more slowly, it suppresses drift to the
left boundary.

Discussion

Sequential sampling models are at present the best formal
framework available for modeling accuracy, latency, and
confidence in simple decisions. In Gigerenzer & Todd’s
(1999) terms, they make reasonable assumptions about how
people gather evidence (information search), when they stop
(termination rules), and what decision is then made (deci-
sion rule). However, while this framework places some con-
straints on what kinds of models are admissable, it still al-
lows considerable variation in the low-level details; some



evidence-accrual models are continuous (Ratcliff 1978) and
others discrete (Smith & van Zandt 2000). Variation in ter-
mination rules also exists, with a distinction made between
accumulator (Vickers 1979) and random walk models.

In their recent paper (Busemeyer, Wang, & Townsend
2006) demonstrate that, in addition to these existing issues,
psychological evidence-accrual based on quantum walks
needs to be considered alongside its classical counterpart.
One method to accommodate this issue is to consider more
general models that trace out a path from the purely quantum
to purely classical, in much the same way that competitive
accumulators can move from random walk to accumulator
behaviour (Usher & McClelland 2001). Such models would
exhibit a broad spectrum of behaviours that correspond to
quantum systems of varying degrees of coherence.

In this paper we have developed exactly such a class
of models, including subclasses corresponding to different
types of decoherence-inducing noise. Of particular note is
that partially-coherent quantum systems produce first pas-
sage time distributions that often have shapes similar to clas-
sical walks, but predict much faster response times. This
indicates that inference from human reaction data for or
against the possibility of quantum or quantum like processes
giving rise to human behaviour is more subtle than previ-
ously envisaged. In part, this subtlty arises from the inherent
complexity associated with inverting the reaction time pro-
files to obtain the underlying evidence gathering processes
(the well-known model mimicry problem; e.g., Ratcliff &
Smith 2004). The bimodal shapes of the noisy Hadamard
walks, for example, are quite different from the unimodal
shape of the Bernoulli walk, yet the two often produce sim-
ilarly shaped first-passage time distributions. Nevertheless,
a number of the shapes in Figures 9 and 10 are quite dis-
tinct from the classical distributions, providing (among other
things) one possible avenue for explaining the bimodal re-
sponse time distributions that are sometimes observed.

One final issue bears mentioning: besides the potential
value in enabling research into the extent to which the mind
satisfies quantum mechanical principles, partially-coherent
walks tie into a long-standing issue in response time model-
ing, namely the extent to which evidence accrues serially or
in parallel (see, e.g., Townsend & Ashby 1983). In quantum
walks evidence accrual occurs in parallel, whereas classical
walks are serial. One interesting line of work would be to
make explicit connections to existing serial-parallel discus-
sions.
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