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Abstract

Psychological models for two-choice decision tasks typically
model the probability that a particular response is made at time
t via the first-passage time to an absorbing boundary for some
stochastic process. In contrast to the most commonly used
models which use classical random walks for the underlying
process, a recent paper by Busemeyer, Wang, and Townsend
(2006) proposed that quantum walks may provide an interest-
ing alternative. In this paper, we extend this work by introduc-
ing a class ofpartially-coherent quantum walk modelsthat can
be applied to human two-choice tasks. The models trace out a
path from quantum to classical models, preserving some of the
desirable features of both. We discuss the properties of these
models, and the implications for modeling simple decisions.

Keywords: decisions, response time, quantum mechanics

The hypothesis that human induction and decision-making
can exploit quantum mechanical phenomena is one that has a
great deal of intuitive appeal. Perhaps the currently most fa-
mous version of this hypothesis is Penrose’s (Penrose, 1989)
suggestion that mathematical insight relies on quantum me-
chanical effects. Although a number of aspects of that spe-
cific version of the hypothesis are controversial (e.g., Litt,
Eliasmith, Kroon, Weinstein, & Thagard, 2006; Hameroff,
2007) there is a certain face validity to the general idea. In
particular, one of the most basic findings from quantum com-
puting is that it is possible to exploit the parallelism inherent
in quantum mechanics to speed up a number of computational
problems (Shor, 1994, 1997; Grover, 1997). Since human
decision processes unfold over time, it is plausible to sug-
gest that an evolutionary advantage would accrue to decision-
makers that can make effective use of quantum mechanical
effects. Of course, many questions need to be answered be-
fore we can determine with any confidence whether or not this
advantage has in fact been achieved by living organisms. In-
deed, at least four important scientific perspectives have sig-
nificant bearing on these questions, namely psychology, biol-
ogy, computer science and physics (see Litt et al., 2006, for
instance). This paper is concerned primarily with psycholog-
ical topics but relies on insights from the other three fields.

From the psychological perspective, one of the main is-
sues with which we must be concerned is the construction of
formal models that make predictions about human behavior.
That is, if the brain can make use of quantum phenomena in
its processing, or (in a weaker formulation) obeys dynamical
laws that reflect the mathematical structure of quantum me-
chanics, what patterns would one expect to observe in human
behavior? In this paper, we adopt the weaker “functional-
ist” perspective, and consider psychological models that use

quantum mechanical principles. The stronger claim, that hu-
man information processing genuinely makes use of quantum
physical phenomena, is beyond the scope of this paper.

In a pioneering paper, Busemeyer et al. (2006) explored
the possibility of a formal characterization of human decision
making processes based on quantum mechanical principles.
Their model was constructed as a quantum mechanical ana-
log of a standard random walk model (e.g., Stone, 1960) for
human decisions and decision latencies. They found that this
quantum mechanical model could reproduce some of the ba-
sic findings in the literature on human decision-making. In
this paper we extend this work in two respects. Firstly, we
consider a more general quantum walk that has its origins in
computer science and physics (Aharonov, Davidovich, & Za-
gury, 1993; Meyer, 1996). We cast this quantum walk into
a linear systems framework (Fuss, White, Sherman, & Nag-
uleswaran, 2007) that allows us to demonstrate the similar-
ities to and differences from a classical random walk. Sec-
ondly, we employ a density matrix formalization of the walk,
allowing us to extend the quantum walk framework to ac-
commodate the influence of noise on the evolution of the
walk. This second aspect producespartially-coherent quan-
tum walk models, which subsume both classical and quantum
walks as special cases. When high levels of noise are injected
into the walk, the quantum state decoheres completely, and
the model reduces to a Bernoulli random walk. When the
noise levels are set to zero, we obtain a pure quantum walk
model. As a result, we arrive at a model for human decision
making that allows us to infer the extent to which quantum
behaviour is manifest.

The structure of this paper is as follows. In the first section,
we introduce two walk processes, one classical and one quan-
tum, and discuss their interpretations as linear systems. We
then discuss the use of absorbing boundaries as psychological
decision criteria, and the calculation of the first passage time
distributions for both processes. Having constructed these
special cases, we then introduce the more general partially-
coherent walks, and discuss two plausible noise processes.
Finally, we provide a brief discussion of the behavior of the
first passage time distributions for partially-coherent walks,
as a function of the amount and type of noise involved.

Sequential Sampling Models,
Classical and Quantum

Our approach, like that of Busemeyer et al. (2006), is
based on a general class of sequential sampling models
commonly used to describe human evidence-accrual and
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Figure 1: The transition diagram for a Bernoulli random walk. Each
node corresponds to a possible locationx for the walk, and each link
is labelled by the amount of probability mass that transfers between
locations at each time point.
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Figure 2: The transition diagram for a two-state quantum walk. Each
node corresponds to one element of the state vector, with the top row
corresponding to the right-handed elements, and the bottom row to
the left-handed elements. Each node is labelled with its locationx.
The coefficientsr, r∗, s ands∗ refer to the amount of probability
amplitude that transfers between different elements (in this illustra-
tion, we setk = 0 for simplicity).

decision-making (e.g., Ratcliff & Smith, 2004). The cen-
tral assumption of such models is that the environment pro-
vides people only with noisy stimulus representations, and
so to make accurate decisions people draw successive sam-
ples from this representation until somedecision threshold
is reached. This class of models (see, e.g., Ratcliff, 1978;
Vickers, 1979; Smith & van Zandt, 2000) draws heavily from
sequential analysis (Wald, 1947) and stochastic processes
(Smith, 2000), and is at present the best formal framework
available for modeling decision accuracy, latency, and sub-
jective confidence in simple decision tasks.

Bernoulli Random Walks

The simplest kind of sequential sampling model relies on
Bernoulli sampling in discrete time. At each time point, the
observer accrues a single piece of evidence drawn from a
Bernoulli distribution: with probabilityq, the evidence fa-
vors responseA, and with probability1− q it favors response
B. The observer draws samples until some decision threshold
is reached; typically, when the number of samples favoring
one option exceeds the number of samples favoring the other
option by some fixed amount. A procedure of this kind de-
fines a discrete random walk on the line, taking a step up with
probabilityq and a step down with probability1 − q, and the
decision thresholds that terminate this process act asabsorb-
ing boundaries(e.g., Smith, 2000). Commonly, one applies
a variant of the so-called “assumption of small steps” (see
Luce 1986) and takes the limit to a continuous Wiener dif-
fusion model (Feller, 1968; Ratcliff, 1978). For conceptual
simplicity, however, we retain the original Bernoulli model.

Formally, in the discrete Bernoulli random walk, we con-
sider the evolution of the probability distributionp(x, t) ∈ R
for discrete timest ≥ 0, and possible locationsx ∈ Z, from
an initial distribution over locationsp(x, 0). The dynamics of

this walk evolve according to the linear difference equation

p(x, t+ 1) = qp(x− 1, t) + (1 − q)p(x+ 1, t), (1)

whereq ∈ [0, 1]. The transition diagram for this difference
equation is given in Figure 1, and illustrates how the probabil-
ity mass is transferred between successive time points. Since
it is a linear system, Equation 1 can be written in matrix form,

p(t+ 1) = Mp(t), (2)

where the transpose of the probability state vector is

pT(t) = (. . . p(−2, t), p(−1, t), p(0, t),
p(1, t), p(2, t), . . .), (3)

and the one-step time evolution matrix is

M =




· · · · · ·
· 0 1 − q 0 0 ·
· q 0 1 − q 0 ·
· 0 q 0 1 − q ·
· 0 0 q 0 ·
· · · · · ·


 . (4)

Note that the columns ofM sum to 1, preserving the isometry
constraint (that probabilities sum to 1 at all times).

Although it is somewhat unnecessary for Bernoulli walks,
since analytic expressions exist for most of their interest-
ing psychological properties (Feller, 1968), this kind of ma-
trix formulation is very useful in general. As discussed by
Diederich and Busemeyer (2003), adopting simple matrix
representations for evidence accrual processes serves a use-
ful pragmatic goal, insofar as it simplifies the subsequent cal-
culation of model predictions in those cases where analytic
expressions do not exist.

Quantum Walks
The Bernoulli random walk is a classical model: it traces out
a single path on the line. However, in a quantum system there
is an inherent parallelism, insofar as (in the absence of mea-
surement) the evidence-accrual process now traces out mul-
tiple paths simultaneously. Consequently, the variance of a
quantum walk increases quadratically with time in contrast to
a linear increase of the variance for a Bernoulli random walk.
Hence we would expect a quantum decision maker to make
decisions considerably faster than the corresponding classical
decision maker. In this section, we describe the basic quan-
tum walk model.

Quantum walks differ from classical ones in two main re-
spects: firstly, although the dynamics are still linear, they
are described with respect to probability amplitudes (com-
plex numbers whose squared absolute values sum to 1), not
probabilities (real numbers that sum to 1); and secondly in
order to preserve isometry on the probabilities, the operator
must be unitary. Unitarity imposes strong constraints on the
kinds of dynamics that may be considered, and as a conse-
quence, quantum walks in which the particle has only alo-
cationx ∈ Z are extremely uninteresting. Typically, this is
addressed by allowing the particle to have achirality (left or
right) as well as a location. The state of the walk at timet is
then described by the spinor

ψ(x, t) =
(
ψR(x, t)
ψL(x, t)

)
, (5)
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Figure 3: The distribution of a Hadamard walk, measured att = 50.
The initial state of the walk places probability amplitude1/2 for
both chiralities at the locationx = 50, and amplitude1/2

√
2 at

both chiralities forx = 49 andx = 51 (essentially an analog of the
Bernoulli case with probability 1/2 in the middle location, and 1/4
on either side).

whereψR(x, t) ∈ C is a complex-valued scalar that describes
the probabilityamplitude in statexwith right-chiralityat time
t. A natural analog of the Bernoulli walk for this system in-
volves some probability amplitude moving from the location
x to the locationsx+1 orx−1, but with the chirality chang-
ing as well. More precisely, the dynamics of the state evolve
according to the difference equations (Aharonov et al., 1993;
Meyer, 1996)

ψR(x, t+ 1) = eik [sψR(x− 1, t) + rψL(x− 1, t)]

ψL(x, t+ 1) = eik [−r∗ψR(x+ 1, t) + s∗ψL(x+ 1, t)] ,
(6)

where |r|2 + |s|2 = 1, s∗ is the complex conjugate ofs,
andk ∈ R. The structure of this walk is illustrated by the
transition diagram in Figure 2, which describes the one-step
evolution for the probability amplitudes, in the case where
k = 0. Notice that the coefficients controls the probabil-
ity amplitude that stays in the same chirality, with amplitudes
in the left chirality consistently moving leftward (i.e.,x de-
creases), and amplitudes in the right chirality moving right
(x increases). The coefficientr controls the “reversal” of the
chirality from left to right and vice versa. In order to illus-
trate the basic characteristics of this kind of quantum walk,
Figure 3 shows what happens when a so-called “Hadamard
walk” (whereeik = i ands = r = i/

√
2) is evolved for 50

time steps and then measured.

Decisions and First Passage Times
The development so far describes an evidence-accrual pro-
cess that (be it classical or quantum mechanical) evolves
without constraint onx ∈ Z. Psychologically, however,
sincex is interpreted as an evidence value, and time is of the
essence to the decision-maker, it is generally assumed that
oncex hits either0 or a, the evidence-accrual terminates and
a decision is made. Accordingly, both0 or a act as absorbing
boundaries, and the decision latency is described by thefirst
passage time distributionto the boundaries.

Bernoulli Random Walks
Not surprisingly, the classical case is straightforward: in or-
der to calculate the first passage times to absorbing bound-
aries atx = 0 andx = a we modify the Bernoulli random
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Figure 4: The transition diagram for an absorbing boundary random
walk. The structure differs from that in Figure 1 only in that the
statesx = 0 andx = 1 do not send probability mass to other states:
instead, all probability mass is preserved in the self-transition links
at each end of the diagram.

walk to have the transition diagram shown in Figure 4. The
nodes atx = 0 andx = a will thus contain the cumula-
tive distribution of absorbed particles at a given time. Since
we are interested in first passage times it is convenient to re-
lax the requirement thatM produce an isometry by dropping
the self-transitions on the end nodes. They will then contain
the first passage time probability for that time. If we choose
a = 4 then the one step time evolution matrix is

M =




0 1 − q 0 0 0
0 0 1 − q 0 0
0 q 0 1 − q 0
0 0 q 0 0
0 0 0 q 0


 . (7)

The model is completed by a choice of the initial state such
aspT(0) = (0, 0, 1, 0, 0). Hence,p(0, t) is the first passage
time distribution for thex = 0 boundary andp(4, t) is the
first passage time distribution for thex = 4 boundary.

Quantum Walks

The absorbing boundary problem for quantum walks is a little
more subtle. We define the projection operators

Pe = |x ≤ 0〉 〈x ≤ 0| (8)

Pf = |0 < x < a〉 〈0 < x < a| (9)

Pc = |a ≤ x〉 〈a ≤ x| , (10)

where Pe projects from the Hilbert space containing the
spinorsψ onto its subspace with support[−∞, 0] and sim-
ilarly Pf projects onto the subspace with support(0, a) and
Pc projects onto the subspace with support[a,∞]. We con-
sider the problem where at each timet we make partial mea-
surements of the quantum walk with the operatorsPe and
Pc. This effectively modifies the time evolution process de-
scribed by the transition diagram in Figure 2 to one described
by transition diagrams such as that in Figure 5, where we have
chosen the case wherea = 4 for simplicity.

We can write a matrix equation

ψ4c(t+ 1) = U4cψ4c(t) (11)

for the operations described by this transition diagram, where

ψT
4c(t) = (ψR(0, t), ψL(0, t), ψR(1, t), ψL(1, t),

ψR(2, t), ψL(2, t), ψR(3, t), ψL(3, t),
ψR(4, t), ψL(4, t)), (12)
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Figure 5: The transition diagram for a quantum walk with absorbing
boundaries, in which we seta = 4, and remove the self-transition
edges. In all other respects, the transition structure mimics the one
in Figure 2.
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Figure 6: First passage times to the two boundaries (witha = 100)
for the Hadamard walk in Figure 3. The extreme multimodality of
these distributions is not generally a characteristic of empirical RT
distributions (e.g. Ratcliff & Smith, 2004).

and the one-step time evolution matrix is

U4c = eik




0 0 0 0 0 0 0 0 0 0
0 0 −r∗ s∗ 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 −r∗ s∗ 0 0 0 0
0 0 s r 0 0 0 0 0 0
0 0 0 0 0 0 −r∗ s∗ 0 0
0 0 0 0 s r 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 s r 0 0
0 0 0 0 0 0 0 0 0 0




.

(13)
We complete the matrix specification by defining an initial
stateψT

4c(0). The first passage time distributions to the two
boundaries are then obtained by making the partial mea-
surements corresponding to observation of the two absorbing
states at each time point,

p(0, t) = |ψR(0, t)|2 + |ψL(0, t)|2 (14)

p(4, t) = |ψR(4, t)|2 + |ψL(4, t)|2. (15)

So, for instance, the first passage time distributions for a
Hadamard walk (see Figure 3) can be easily computed, and
are illustrated in Figure 6.

Partially Coherent Quantum Walks
Since in psychology we are rarely confronted with pure sys-
tems of any kind, we would like to allow for the possibility
that our quantum walks decohere as a result of their interac-
tion with their environment1. Decoherence is one pathway

1The term “environment” here is intended quite generally - re-
ferring to any aspect of the world outside of the decision-system,
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Figure 7: The distribution of a free Hadamard walk (att = 50) with
a small amount (α = 0.1) of phase damping noise, and a Gaussian
distribution over start points (suitably discretized, with meanx = 50
and standard deviation 5).

from quantum to classical systems so we expect our walks to
produce the quantum walk results for low decoherence and
the random walk results for high decoherence.

We formulate the partially coherent quantum walk in terms
of density matricesρ(x, t). The density matrix representation
for a quantum state is constructed by taking the outer product
of the spinor and its adjoint,

ρ(x, x′, t) = ψ(x, t)ψ†(x′, t). (16)

Thus theij-th cell of the density matrixρij(x, x′, t) is sim-
ply the productψi(x, t)ψ∗

j (x, t). Accordingly, the main di-
agonal elements ofρ are real-valued and non-negative, and
describe the probabilities (not amplitudes) associated with a
particular state. The “correlations” between the states are rep-
resented by the off-diagonal elements of the matrix, which are
complex-valued.

When adopting the density matrix formulation, we begin
by constructing the initial state from the spinor, as follows:

ρ(x, x′, 0) = ψ(x, 0)ψ†(x′, 0). (17)

We then inject noise into the density matrix before applying
the time evolution operatorU. If we let ρ̃(x, x′, t) denote a
noise-corrupted density matrix at timet, then the evolution of
the system is described by,

ρ(x, x′, t+ 1) = Uρ̃(x, x′, t)U†, (18)

and we inject noise once more to arrive atρ̃(x, x′, t + 1),
the noise-corrupted density matrix at timet + 1. In order to
include absorbing boundaries at each stage we make partial
measurements of the noisy density matrix. In the example
with boundaries atx = 0 andx = 4 to obtain the first passage
time probabilities at each time step we measure

p(0, t) = ρ0,0(0, 0, t) + ρ1,1(0, 0, t) (19)

p(4, t) = ρ0,0(4, 4, t) + ρ1,1(4, 4, t), (20)

noting that in doing so we collapse the first two and last two
columns and rows of the density matrix, in analogy with the
coherent case state functions.

Choosing a noise model to govern the transition from quan-
tum to classical behavior is not simple. There are a num-
ber of plausible candidates for psychological noise processes,
each describing a way of calculatingρ̃ fromρ (see Nielsen &

including other neural systems.
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Figure 8: The effect of adding amplitude-damping noise to a Hadamard walk witha = 100. From left to right, the top panels show the effect
of injecting a small amount of noise into the quantum walk, withα of 0.01, 0.1 and 0.2. The lower panels consider the opposite effect, where
the rightmost panel is purely classical (α = 1), and the left panels allow very weak quantum effects (α = 0.8 and0.9). The black lines plots
the first passage times to the right boundaryx = a, and the grey line plots hitting times for the left boundaryx = 0.

Chuang, 2000 for a broader discussion). The basic approach
is to apply noise operatorsE0,E1, . . . ,Em to the density ma-
trix ρ, such that

ρ̃(x, x′, t) =
m∑

j=0

Ejρ(x, x′, t)E
†
j. (21)

It is worth noting the noise and time-evolution operators can
be seen as two aspects to a single “noisy evolution”. That
is, by putting Equations 18 and 21 together, we can directly
describe the time evolution of the system using

ρ̃(x, x′, t+ 1) = U




m∑

j=0

Ejρ̃(x, x′, t)E†
j


U†. (22)

For the purposes of the current paper, we briefly mention
two simple possibilities. The first,amplitude damping via
spontaneousdecay, arises when a quantum system is coupled
with a vacuum The operator formalism for amplitude damp-
ing via spontaneous decay is given by

E0 =
[

1 0
0

√
1 − α

]
, E1 =

[
0

√
α

0 0

]
. (23)

The second example we mention isphase dampingin which

E0 =
[

1 0
0

√
1 − α

]
, E1 =

[
0 0
0

√
α

]
. (24)

However, there it is straightforward to modify the approach
to accommodate other noise models, such as generalized am-
plitude damping or depolarization.

As discussed previously, our primary aim in this paper is
to extend the psychological theory developed by Busemeyer
et al. (2006), and illustrate how injecting noise into the walk
gives rise to partially-coherent walks that preserve the desir-
able characteristics of their classical counterparts, while re-
taining some of the interesting properties of the pure quan-
tum walks. While the psychological theory is a long way

from being fully developed, it is worth discussing the kinds
of empirical data patterns that the partially-coherent walks are
able to capture. To illustrate this, Figure 8 show the first pas-
sage time distributions for an amplitude-damped Hadamard
walk at several different levels of noise. From a psycholog-
ical perspective, two relevant effects are illustrated. Firstly,
as is clear from the top panel, only very small amounts of
noise are required to smooth out the interference patterns in
Figure 6 (they are gone even atα = 0.01); some “quantum
tunnelling” effects are still observable at this level (i.e., the
second mode at aboutt = 200), but those too are gone once
α reaches 0.1. In contrast, the lower panels show the converse
effect: allowing even a modest degree of coherence to persist
in the state (e.g., withα = .9) produces an enormous speed
up to the decision times. However, some refinement is clearly
required: for instance, this particular noise model suppresses
the drift to the left boundary, so the “error” rate remains near
zero across most values ofα.

Discussion
Sequential sampling models are at present the best formal
framework available for modeling accuracy, latency, and con-
fidence in simple decisions. In Gigerenzer and Todd’s (1999)
terms, they make reasonable assumptions about how people
gather evidence (information search), when they stop (termi-
nation rules), and what decision is then made (decision rule).
However, while this framework places some constraints on
what kinds of models are admissable, it still allows con-
siderable variation in the low-level details; some evidence-
accrual models are continuous (Ratcliff, 1978) and others dis-
crete (Smith & van Zandt, 2000). Variation in termination
rules also exists, with a distinction made between accumula-
tor (Vickers, 1979) and random walk models.

In their recent paper (Busemeyer et al., 2006) argue that,
in addition to these existing issues, psychological evidence-
accrual based on quantum walks needs to be considered
alongside its classical counterpart. One method to accommo-
date this issue is to consider more general models that trace
out a path from the purely quantum to purely classical, in
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much the same way that competitive accumulators can move
from random walk to accumulator behavior (Usher & Mc-
Clelland, 2001). Such models would exhibit a broad spectrum
of behaviors that correspond to quantum systems of varying
degrees of coherence.

In this paper we have developed exactly such a class of
models, inducing partial decoherence by injecting noise into
the walk. Of particular note is that partially-coherent quan-
tum systems produce first passage time distributions that of-
ten have shapes similar to classical walks (smoothing over
the jagged distributions produced by the pure system), but
predict much faster response times. This indicates that infer-
ence from human reaction data for or against the possibility
of quantum or quantum-like processes giving rise to human
behavior is more subtle than previously envisaged. In part,
this subtlty arises from the inherent complexity associated
with inverting the reaction time profiles to obtain the under-
lying evidence gathering processes (the well-known model
mimicry problem; e.g., Ratcliff & Smith, 2004). The bimodal
shapes of the noisy Hadamard walks, for example, are quite
different from the unimodal shape of the Bernoulli walk, yet
the two often produce similarly shaped first-passage time dis-
tributions.

An important point worth noting, however, is that a num-
ber of the shapes that these models can produce appear to be
quite distinct from the classical distributions, potentially al-
lowing explicit experimental tests to be developed. To give a
simple example, Figure 9 provides a case in which amplitude-
damping noise is added to a (non-Hadamard) walk that is
normally symmetric. However, in this case the noise breaks
the symmetry of the walk, and creates quite unusual-looking
first-passage time distributions. We suggest that the ability
to extract this kind of first passage time distribution from a
partially-coherent quantum walk is precisely what is needed,
as a prerequisite for constructing genuine experimental tests
of the hypothesis that the simple decisions make use of quan-
tum mechanics.

One final issue bears mentioning: besides the potential
value in enabling research into the extent to which the mind
satisfies quantum mechanical principles, partially-coherent
walks tie into a long-standing issue in response time mod-
eling, namely the extent to which evidence accrues serially or
in parallel (see, e.g., Townsend & Ashby, 1983). In quantum
walks evidence accrual occurs in parallel, whereas classical
walks are serial. One interesting line of work would be to

make explicit connections to existing serial-parallel discus-
sions.
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