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Abstract 

In this paper we describe the most extensive set of word associations collected to date.  The 

database contains over 12,000 cue words for which more than 70,000 participants generated 

three responses in a multiple response free association task. The goal of this study was to (a) 

create a semantic graph that covers a large part of the human lexicon, (b) to investigate the 

implications of a multiple response procedure by deriving a weighted directed graph and (c) to 

show how measures of centrality and relatedness derived from this graph predict both lexical 

access in a lexical decision task and semantic relatedness in similarity judgment tasks. First, our 

results show that the multiple response procedure results in a more heterogeneous set of 

responses, which lead to better predictions of lexical access and semantic relatedness than single 

response procedures. Second, the directed nature of the network leads to a decomposition of 

centrality that primarily depends on the number of incoming links or in-degree of each node 

rather than its set-size or number of outgoing links. Both studies indicate that adequate 

representation formats and sufficiently rich data derived from word associations represent a 

valuable type of information in both lexical and semantic processing. 

Keywords: word associations; semantic network; lexical decision; semantic relatedness; 

lexical centrality.  
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Associative knowledge is a central component in many accounts of recall, recognition and 

semantic representations in word processing. There are multiple ways to tap into this knowledge, 

but word associations are considered to be the most direct route to gain insight into our semantic 

knowledge (Nelson, McEvoy, & Schreiber, 2004; Mollin, 2009) and human thought in general 

(Deese, 1965).  The type of information produced by word associations is capable of expressing 

any kind of semantic relationship between words. Because of this flexibility, networks are 

considered the natural representation of word associations, where nodes correspond to lexicalized 

concepts, and links indicate semantic or lexical relationships between two nodes. These networks 

correspond to an idealized localist representation of our mental lexical network. The properties 

derived from such a network have been instrumental in three different research traditions, which 

will be described below. These traditions have focused either on (a) direct association strength, 

(b) second order strength and distributional similarity, and (c) network topology and centrality 

measures.  

The first tradition has used word associations to calculate a measure of associative 

strength and was inspired by a behaviorist view of language in terms of stimulus-response 

patterns. This notion of associative strength plays an important role in studies that have focused 

on inhibition and facilitation in list learning (e.g., Roediger & Neely, 1982), similar studies on 

episodic memory (e.g., Nelson et al., 2004) and studies that have tried to distinguish semantic and 

associative priming (for a recent overview, see Lucas, 2000). In these studies, the notion of an 

underlying network is of secondary importance and the focus is on direct measures of strength 

that can be obtained relatively easy since only the cues present in the task need to be considered.  

A second tradition focuses on second order strength of associations.  Instead of looking at 

individual strengths between cues and responses, the interesting properties are found in the 

structure of the network itself (Deese, 1965). The simpler and small scale version of this 
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approach underlies mediated associations, which have been studied extensively in priming as 

well. More elaborate approaches are those where complete the association distributions are used 

instead of the first-order. For example, the word blood and accident might not be directly 

associated, but the overlap between common associations such as red, wound, hurt etc. of these 

two words provides insight in the way both words are related. This idea was initially explored in 

the factor analytic studies on nouns and adjectives by Deese (1965), which predates many 

modern approaches to semantic memory that rely on distributional similarity, such as Latent 

Semantic Analysis ( Landauer & Dumais, 1997), word association spaces (Steyvers, Shiffrin, & 

Nelson, 2004) or association-based topic models (Andrews, Vinson, & Vigliocco 2008). 

Moreover, the added potential of this approach was indicated in the study by Steyvers and his 

colleagues, who found that a high dimensional vector space model based on word associations 

gave a better account of cued recall than any similar text-based model. The first two traditions 

were introduced some time ago and the main results are summarized in Cramer (1968) and Deese 

(1965). 

The third and most recent development has used elaborated networks of associations, 

implemented as graphs, to learn about the development of language and the way words can be  

retrieved efficiently. Some of the initial ideas about the exploration of a semantic network 

through spreading activation go back to the seminal work of Collins and Quillian (1969).  More 

recently, the global structure of large-scale graphs have provided new evidence of possible 

mental processes and structures. In both English (Steyvers and Tenenbaum, 2005) and Dutch  

(De Deyne and Storms, 2008b), it has been shown that the mental lexicon represented as a word 

association network is characterized by a specific organization common to many networks that 

grow steadily over time such as the world wide web. Similar to these naturally growing networks, 

word association networks do not have an arbitrary organization but show a small-world structure 
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where on average two words are separated by less than four associated nodes. Large-scale 

modeling of growing networks has also resulted in a mechanistic account for numerous findings 

in word processing including frequency and age-of-acquisition effects. The importance of 

expanding this type of research is also acknowledged by Balota and Coane (2008) who argue that 

these procedures have taken a significant step toward capturing semantic memory within an 

empirically verified network (Balota & Coane, 2008, p 516). 

These three lines of research correspond to a shift from local interactions measured as 

direct strength to interactions within a subgraph (mediated and distributional measures) to global 

characteristics of the network (network topology and centrality) and coincides with the recent 

computational advancements and theoretical developments such as the renewed interest in 

network theory (see Newman, 2011, for an introduction).  

Naturally, there are limitations with the word association approach as well.  For instance, 

according to Aitchison (2003), one of the most important limitations is the lack of weak links in 

networks derived from word associations. We agree that studying the structures from which a 

large part of our mental and verbal behavior originates requires a better approximation of the 

associative network. In what follows, we will argue that both the sample size and the coverage of 

the lexicon are important considerations in making inferences about the structure and other 

properties of such a network. Centrality in a network, for instance, will only stabilize if a large 

proportion of the important nodes in a network are present, and the reliability of distributional 

similarity will depend on whether the distribution of two words are sampled extensively enough 

to allow any overlap. This motivated us to invest considerable effort in building an extensive 

database for word associations. 

Such a network is unique and valuable in several ways. First, few studies have attempted 

to compile a  semantic network that covers a reasonably large part of the human lexicon. The 
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largest word associations databases are the Edinburgh Associative Thesaurus (EAT; Kiss, 

Armstrong, Milroy, & Piper, 1973) and the University of South Florida association dataset (USF;  

Nelson et al., 2004). The EAT associations consist of responses made by 100 British English 

speakers to each of the 8,400 cues collected between 1968 and 1971. The USF associations are 

more recent and were collected among American English speakers from the late seventies 

onwards. The USF associations are normed, meaning that each associate in this set was also 

presented as a cue. However, only 5,400 cues were presented. Moreover, in both datasets a 

discrete free association task was used, meaning that only a single response per cue was 

generated by the participants.  One of the consequences of the discrete procedure is that the 

response frequencies are reliable only for the very strong associates, while weaker responses are 

either unreliable or missing (Nelson, McEvoy, & Dennis, 2000). This lack of weak associations is 

seen as a general drawback of the word association procedure (Aitchison, 2003) and was 

responsible for questioning the results of previous findings in mediated priming (Ratcliff & 

McKoon, 1994; Chwilla, Kolk & Mulder, 2000) and presumably affects still other semantic tasks. 

Furthermore, when word associations are represented in a graph, the coverage of the lexicon in 

this graph becomes important. The problem of coverage is most pronounced for various graph-

based centrality and distance measures that depend on the directionality of the association 

between a cue and response. Most often, this corresponds to a graph where each node is 

presented as a cue and where the network indicates for each node the number of incoming and 

outgoing links. The number of incoming links for a node relies on the initial selection of words 

presented as cues. In most situations, it is not feasible to present all the association responses as 

cues. Instead a small subset, such as the single most frequently generated response per cue, is 

presented. In this sense, the word association graph is never complete and always slightly biased 

since many responses were never incorporated as a cue and cannot contribute as an incoming or 
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outgoing link. Ideally, all the collected associations are also presented as cues. While this is 

infeasible in practice, it is important to provide an estimate of the bias this introduces to the 

structure of the underlying graph.  

 

Outline 

In this paper, we present a new study that provides the most realistic approximation of the  

human lexicon to date by creating a lexico-semantic network that includes the responses of over 

70,000 participants. In the first part, we will show how the current network addresses the problem 

of sample size by using a multiple response association procedure. Next, we will argue that the 

graph extracted from these data covers a useful portion of the lexicon. 

In the second part, we indicate how such a rich network leads to improved predictions in 

two key areas of cognition. The first test involves the evaluation of availability effects in word 

processing using network derived centrality measures in the Lexical Decision Task (LDT). One 

of the core advantages of a realistic size network is that we can derive distinct properties that can 

explain the centrality of words and see how these measures relate to lexical access or retrieval. A 

second key area is the study of semantic cognition where the large-scale network allows us to 

infer the distributional similarity of various nodes in the network. As network sparsity has been 

problematic in semantic tasks such as mediated priming, we investigate these properties in a pure 

semantic context by predicting semantic relatedness and similarity judgments.  

In both parts, we will particularly focus on the differential predictions derived from a discrete 

versus a multiple response association task.  We will conclude with a discussion on the use of the 

measures derived from the network and the extent to which this network covers the mental 

lexicon.  
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The Dutch Association Lexicon 

In the following section, we will first describe the collection of data used to build the 

Dutch Association Lexicon. A small proportion of this lexicon of word associations, containing 

1,424 words, is described in De Deyne and Storms (2008a). We will focus on the impact of the 

continued multiple response procedure, since this procedure sets our study apart from previous 

large-scale association procedures.  

 

Method 

Participants. The data were gathered in two stages.  In the first stage,  participants were 

primarily first-year students at the Belgium universities of Leuven and Ghent who volunteered or 

participated to fulfill the credit requirements of a course. In the second stage, the vast majority of 

participants were volunteers who participated online and forwarded the experiment URL
1
 to other 

persons. The total group of participants consisted of 71,380 persons (47,459 females, 22,966 

males, 955 unspecified). Age was specified by 70,786 participants and varied between 7 and 96 

(M=40). In the course of the second phase, we also started recruiting participants in the 

Netherlands and began asking additional information about the spoken Dutch variation (Dutch 

spoken in Flanders or the Netherlands). These variations of Dutch are closely related, in a similar 

way that British and American English are. A total of 6,875 out of the 71,380 participants 

indicated they were Dutch speakers from the Netherlands.  

Materials. The collection of norms started in 2003. Although new data are still being 

collected at the moment of writing, this report only includes material up to November 2010. The 

initial set of cue words was taken from a set of semantic concepts reported in Ruts et al. (2004) 

and De Deyne and Storms (2008a). The Ruts et al. study includes words from 13 different 
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semantic categories for artifacts, natural kinds such as various animal categories, and actions. 

This set of seeding words was further expanded in 2008 by De Deyne and Storms using a 

snowball procedure in which the most frequent responses were gradually added to the list of cues. 

Simultaneously, this set of words was expanded with words that might be useful for a number of 

research lines. Examples of such sets are words commonly used in picture-naming norms 

(Severens, Van Lommel, Ratinckx, & Hartsuiker, 2005) and English-Dutch cognates (Brysbaert, 

personal communication, 2008). The final set includes 12,571 cues. This set of cues covered the 

important parts-of-speech and consisted primarily of nouns (64.5%) followed by adjectives 

(16.9%), verbs (15.7%), adverbs (1.3%) and prepositions (0.6%). 

Procedure. During the first stage of the data collection, both a pen and paper and an 

online data collection procedure was used. Since De Deyne and Storms (2008a) explain the pen 

and paper procedure and the subsequent collection of the data used a web-based questionnaire, 

we will only describe the latter procedure. The task was a continued free word association task in 

which the participants provided three different associates to each cue presented. Each participant 

was asked to type the first three words that came to mind upon the presentation of a cue. They 

were instructed to avoid using full sentences as responses, abstain from using strictly personal 

associations and only consider the cue word presented on top of the questionnaire form. If a cue 

was not known they were asked to indicate this by pressing a button labeled „unknown‟. Next to 

these instructions, a questionnaire form was displayed containing a word and three blank spaces 

where the associations could be typed.  

The use of a snowballing procedure implies that the cues were chosen from a list of words 

that varied depending on the time of the data collection. Every list that was generated for a 

particular participant was different. Furthermore, the order of presentation of the cues was 

randomized for each participant. The average list length contained 18 cues and varied between 7 



10 

 

and 30 cues. Generating the associations for a list of average size took less than 10 minutes.  

 

Results 

Preprocessing. To verify whether the responses for a particular participant were 

meaningful a number of automated checks were performed. First, participants who gave more 

than 50% “don‟t know the word” responses were discarded, resulting in the removal of 350 

participants. Second, we checked whether the responses were actual Dutch words by comparing 

the responses to a wordlist obtained from the CELEX word frequency corpus (Baayen, 

Piepenbrock, & van Rijn, 1993). Only participants for whom more than 40% of the responses 

were represented in the CELEX word list were retained. At the level of cue words, we aimed to 

have 100 participants provide at least one association per cue. For some words, the number of 

participants that provided associations was slightly larger. To aid interpretation and avoid the 

over-representation of these words, we only keep the 100 first participants who completed each 

cue. At this point, the data reflect the responses of 70,369 individuals. Finally, all the association 

responses were converted to lower-case words and non-alphabetical characters were removed. Of 

the words that occur more than once, 64% were identified as a correctly spelled Dutch word 

using the OpenTaal spelling dictionary (available from http://www.opentaal.org/bestanden).  

Missing and unknown responses. A total of 3,771,300 responses were collected for a set 

of 12,571 cues.  For each cue, 100 participants provided a primary, secondary and tertiary 

association. If a word was not known, both the primary, secondary and tertiary association 

responses were coded as ‟x‟. Some participants only provided the first or the first two responses. 

These missing responses were considered to differ from the case where a word was unknown. A 

total of 15,885 secondary responses (accounting for 1.3% of the data) and 55,000 tertiary 

(accounting for 4.4% of the data) were considered missing. A total of 17,892 of the presented cue 
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instances were unknown. The percentage unknown ranged between 0 and 72% (M = 1.42) per 

cue. These numbers also indicated that the vast majority of cues (97%) were known by at least 90 

percent of the participants. In the remainder of the article, we will report statistics for the 

associations excluding missing and unknown responses.  

Types and tokens. The number of types and tokens provide a description of the vocabulary 

size present in the association lexicon, and the rate at which new types are introduced as more 

responses are collected gives us an idea of how much information has already been collected for 

each word. Below we report the statistics on the number of types and tokens tabulated for the 

entire dataset and for each cue separately. Since the ratio of types and tokens can be interpreted 

as a measure of response heterogeneity, we propose a general measure that captures this 

information. For the entire database, the total number of response types was 201,356 for 

3,646,739 valid response tokens. This result can be broken down by primary, secondary and 

tertiary associations resulting in 88,280 (1,239,208) types (tokens) for the primary response, 

106,342 (1,223,323) for the secondary and 108,678 (1,184,208) for the tertiary response. At the 

level of cues, an average of 118 (SD = 23.6) different response types were generated for the cues. 

The number of response types varied considerably: from 33 (for the cue article) to 211 (for the 

cue telepathy). The entropy of the distribution can express this heterogeneity in the distribution of 

responses:  

                

 

   

 

where n is the size of the vocabulary or number of types, pi is the probability for the i-th 

type, and the sum is taken over all types with non-zero response probability. In other words, H 

increases as the responses become more heterogeneous. If all tokens are identical, H equals zero. 

If there is no overlap in the responses, all tokens are different and the entropy is maximized. This 

upper bound depends on the number of responses: for 300 responses (i.e., 3 associations provided 
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by 100 participants), the maximum entropy is H = 8.22. The change in entropy as a function of 

the number of collected tokens also indicates how many associations should be collected to have 

a stable representation. To investigate the relationship between increasing vocabulary size and H 

we plotted the average entropy for each cue as function of the number of responses.  

------------------------------ 

INSERT FIGURE 1 

------------------------------- 

 

Figure 1a shows the entropy for the cues that were known to at least 95% of the 

participants
2
 . The Figure shows the range in entropy as a grey surface and the average entropy as 

the curve plotted within this surface. The grey surface indicates that the rates at which new types 

are introduced as function of the collected tokens varies widely between low and high entropy 

words. The entropy curves also provide a better intuition of how stable certain words are and are 

arguably more informative than measures of reliability, which reflect the end point of the 

heterogeneity in the responses (e.g., Nelson, McEvoy & Dennis, 2000).  

A second question pertains the degree to which the second and third responses represent 

qualitatively similar responses to the first. If this is the case, the type-token ratio should be 

similar regardless of the serial position of the response. Figure 1b show this is not the case: the 

average entropy was higher for the secondary and tertiary response compared to the primary 

response. These findings replicate and generalize the finding by Nelson et al. (2000) who 

performed a multiple response procedure with two responses per cue for a small set of words and 

showed that the ranking of the response depended on the response position (i.e. whether it was a 

primary, secondary, or tertiary response).  

A final case that needs further attention is that of idiosyncratic responses (types occurring 
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only once), often referred to as Hapax Legomena types (a term from the Greek, “said only 

once”). For the total number of response types tabulated over the different cues, the majority 

(63%) consists of Hapax Legomena or words occurring with a frequency of one. Despite the 

frequent occurrence of Hapax words, these words account for only 3.5% of the response data. 

This is in line with Zipf‟s law, which states that the frequency of a type is inversely proportional 

to its rank in the frequency distribution. Although the most frequently used version of the USF 

dataset excludes these idiosyncratic responses, Nelson and colleagues have indicated that most of 

these responses represent meaningful information (Nelson, McEvoy, & Schreiber, 2004). 

Inspection of our data confirmed that this is the case for Dutch as well. For example, for the word 

language (Dutch: taal), the idiosyncratic responses included words like body language, 

development, literature, text, travel, foreign, Swedish, etc. indicating weak, yet meaningful 

associative relationships. Furthermore, they reflect the long tail in the response generation 

distribution. Based on these observations, we decided to retain Hapax Legomena words as part of 

the dataset.  

The results of the data collection procedure can be summarized as follows. First, the 

continued version of the free association task results in an increasing number of different types in 

comparison with a similar task where only one word association per cue is required. This 

indicates that the procedure provides a useful way of increasing the number of weak associations. 

Furthermore, inspection of the data showed that idiosyncratic responses encode meaningful 

relations with the cue. The usefulness of including a larger number of different types, in part by 

using a continued version of the free association task and including idiosyncratic responses needs 

to be verified empirically. This will be the topic of the last section of this paper. However, first, 

we will derive a network model of the mental lexicon using the association norms presented 

earlier.   
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A semantic network of word associations 

The richness of word associations is best captured by representing the associations as a 

weighted directed semantic network where the weights or strengths are determined by some 

function of the association frequencies and the direction is determined by the role of the node 

(either a cue or a response). When the nodes correspond to the cues, we obtain a unimodal 

network in which incoming and outgoing links are interpretable given that the initial number of 

cues is adequately large. This unimodal network will be used as the substrate for representing our 

lexico-semantic knowledge. A number of additional steps are required to construct this unimodal 

cue by cue directed network G. In addition, this representation significantly reduces the number 

of different types that are represented, which leads us to consider the degree to which this 

network covers the human lexicon. The construction and description of these networks, and the 

coverage of the final representations, is described in the next section while the resulting networks 

will be used as the foundation of the studies in the second part of the paper.  

 

Method 

Procedure. The network is constructed from a weighted adjacency matrix where both the 

rows and columns correspond to the different cues and contains the association frequencies 

observed between a cue and a response. In other words, only responses that were also presented 

as cues are encoded in the network. To allow the calculation of the various measures reported 

below, we removed all single loops in this network. For example, for the cue hammer, a loop 

would occur if the participants respond „hammer‟. Next, we obtain the largest weakly connected 

component. This component consists of the maximal subset of nodes in a directed network that 

have at least one incoming or outgoing link. In addition, we also created a second set of 
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structurally equivalent networks where the weights correspond to estimated association strengths 

using the procedure proposed by Nelson et al. (2000) and adapted by Maki (2008).  Instead of 

treating the association frequencies as weights of the network, the frequencies are regarded as 

manifestations of strength, rather than strength itself. Nelson et al. argue that given a cue, a 

random sample of association strengths becomes activated and the highest strength determines 

the ultimate response. The process captures the variability within and between participants and 

can be simulated using the gradient descent method proposed by Maki (2008). This results in 

mean strength estimates of each cue-response pair based on the observed word association 

frequencies (see Maki, 2008, for technical details). To be able to compare the effect of the 

multiple response procedure, we repeated the steps listed above to create networks based on the 

first (G1), first and second (G2) and all responses (G3). 

Results and Discussion 

Network Size. Restricting the network to words that were present both as a cue and as a 

response reduced the number of nodes from 12,571 to 12,428. The removed nodes included 

words like dermatology, or lentil. These words were present in the set of cues as stimuli to be 

used in other experiments but turned out to be too infrequent to be produced as a response to any 

of the cues. All remaining words were present as part of the largest weakly connected component 

shared by all networks (G1, G2, and G3). Since the network with weighted association strength 

differs only in terms of values of the edges and not in terms of the number of edges, the 

components for this network are identical to those of the original network.  

Coverage. A potential problem with the conversion from two-mode association data to a 

directed weighted network is the fact that only the response tokens that are presented as a cue are 

retained. In other words, a large proportion of the data that was originally present in the two-



16 

 

mode data is not considered, since this procedure reduces the number of columns in the two-

mode adjacency matrix from over 200,000 to 12,428. Although the Zipfian distribution of the 

response tokens implies that the majority of tokens should be retained for most words, it is 

possible that certain types of cues (i.e., those with low-frequent responses) are more affected than 

others. For those cues, the network-derived measures might be biased. To investigate this more 

systematically, we calculated for each cue the percentage of response tokens represented in each 

network. The results for each of the networks are shown in Figure 2. 

------------------------------ 

INSERT FIGURE 2 

------------------------------- 

 

 For each of the networks, the majority of the response tokens are represented in the 

network. The median number of response tokens, indicated as a bold line in Figure 2, differed 

depending on the density of the network and corresponded to 87 for G1, 84.4 for G2  and 83.3 for 

G3. The distribution of the percentage of responses shows that cues represented by less than 75% 

of their response tokens is small (14.2%, 15.3% and 15.9% for the respective networks). The 

slight decrease of coverage for networks including secondary and tertiary responses can be 

explained by the additional heterogeneity present in these responses, which reduces the 

probability that they would occur as cues in the word association task. Moreover, the resulting 

distributions represent an underestimate of the number of responses that could be represented if 

all response word forms would be converted to lemmas. For example lemmatizing the various 

word forms for the word dream (e.g., dreaming, dreams) would significantly increase the number 

of responses encoded in the cue by cue adjacency matrix. Together, the loss of response types by 

considering a one-mode network representation indicates that even with only 12,428 cues most of 
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the association responses are still represented. This results in a unimodal network that approaches 

a stable sized lexico-semantic network as the majority of the associations themselves are present 

as cues.  

Network Properties. The multiple response procedure also affects the global topology of 

the network such as its density, diameter, average path length and clustering coefficient. To 

understand how the larger network compares to previous results and the contribution of multiple 

responses, we calculated these indices for the USF network containing 4,982 nodes (Nelson, 

McEvoy, & Schreiber, 2004), the Leuven-2008 network with  1,424 nodes (De Deyne & Storms, 

2008a) and the new networks that vary in terms of serial response position (G1, G2 and G3). The 

density of the network is 1 if all nodes are connected to each other in the network. If multiple 

responses result in richer representations then we should see an increase in network density. The 

results in Table 1 show that this indeed the case with the density of G3 about three times as dense 

than G1 

 

------------------------------------- 

INSERT TABLE 1 

------------------------------------- 

 

In contrast to the much smaller Leuven-2008 network, the new networks are considerably 

less dense (0.64% for G3 in, comparison to 2.40% in the Leuven-2008 network). This might be 

due to the way the Leuven-2008 network was set up (starting from a small set of semantic 

classes). However, the new networks are denser than the USF network. Next, we considered 

average path length of the network. All possible paths were calculated using the Dijkstra 

algorithm (Dijkstra, 1959). Table 1 shows how adding more nodes to the network reduces the 
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average path length even when the density is lower. This is indicated by the values for the 

Leuven-2008 network and G3 where the former has an average path length of 3.27 and density of 

2.4% and the latter has an average path length of 3.06 and density of 0.64%. Similarly, Table 1 

shows how the diameter -- the maximum path length connecting any two nodes in the network -- 

decreases as a function of the number of nodes and density. Finally, we also calculated the 

clustering coefficient for these networks as an indicator of network organization. This measure 

corresponds to the probability that the neighboring nodes of a specific node in the network are 

connected themselves (cfr. Appendix 1). The pattern for this measure differs from all other 

measures because the probability that any two neighboring nodes are connected in a network 

drops much faster as new responses are added. This occurs both when comparing with the 

previous networks Leuven-2008 and USF and by comparing the single (G1) against the multiple 

response networks (G2 and G3). Because the clustering coefficient depends on the density of the 

networks, we constructed three new graphs based on a random permutation of the in- and out-

going edges. The average clustering coefficients for the random networks were C = .0189 (sd= 

0.011) based on G1, C = 0.032 (sd = 0.011) for G2 and C = 0.0455 (sd = 0.014) for G3. Taking the 

ratio between the random and original networks (cfr. Table 1) shows  that the clustering in the 

network is respectively 18, 10 and 7 times larger than the corresponding random networks for 

G1,G2 and G3. This indicates that adding secondary and tertiary responses reduces the tight 

clustering compared to networks based on a single response. 

The global picture that emerges from this comparison is that larger networks necessarily 

result in sparser adjacency matrices with lower clustering coefficients, but the use of a multiple 

response procedure reduces sparsity and the distance to reach any two nodes in the network. 

Summarizing these results, we have found that collecting multiple responses in a continued word 

association task affects various properties of the semantic network derived from these word 
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associations. A more extensive (and more varied in terms of cues)  coverage of the mental 

lexicon results in a less strongly organized network in terms of the clustering coefficient, while 

the distance to any two particular nodes only decreases slightly (indicated by the average path 

length and diameter) when adding the secondary and tertiary responses to the network. The 

biggest difference is found for the density of these networks. This larger difference in density 

between G1, G2 and G3 allow us to test and compare the influence of encoding secondary and 

tertiary responses in comparison with the traditional single response procedure most often used in 

previous word associations studies.  In the next study, we will evaluate the effect of network 

density in word processing. 

 

 

Study 1: Word Processing 

One of the ubiquitous findings in word processing is that some words are recognized and 

produced with less effort than others do. This is primarily explained in terms of word frequency. 

Other potentially influential measures include age-of-acquisition (e.g., Turner, Valentine, & Ellis, 

1998), familiarity (Balota & Chumbley, 1984; Gernsbacher, 1984), number of dictionary 

meanings (Azuma & Van Orden, 1997), imageability (e.g., Coltheart, Patterson, & Marshall, 

1980), contextual diversity (e.g., Brysbaert & New, 2009) and arousal (e.g., Scott, Donnell, 

Leuthold, & Sereno, 2009). For a number of these variables, a structural hypothesis is provided in 

terms of the connectivity in a network but only a few of these theoretical claims have been 

directly tested. A good example is the variety of different accounts for imageability effects. 

According to the contextual variety effect, highly imageable words have a processing advantage 

because they have a smaller set size (Galbraith & Underwood, 1973). A similar explanation 

based on context availability is given by Schwanenflugel and Shoben (1983) and by 
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Schwanenflugel, Akin, and Luh (1992). A third theory by Plaut and Shallice (1993), claims that 

concrete words have more semantic properties than abstract concepts thereby resulting in a 

processing advantage. Finally, de Groot (1989) has proposed an opposing claim, where concrete 

concepts have smaller associative sets than abstract words. Even the effect of word frequency, 

which has been extensively documented and shown to affect nearly all tasks including word 

processing, there is no agreement on the precise mechanism (Balota, Yap, & Cortese, 2006). 

However, many of the interpretations assume that frequency is encoded as the weights among the 

connections between either units that correspond to words or abstract sublexical units (e.g., Plaut, 

McClelland, Seidenberg, & Patterson, 1996).  A similar structural mechanism accounts for 

semantic effects of age-of-acquisition. According to the semantic hypothesis, early-acquired 

words are positioned in a more central part of the semantic network compared to later acquired 

words (Steyvers & Tenenbaum, 2005). Network derived measures might provide a direct means 

to test many of these hypotheses. Although it seems unlikely that processing advantages can be 

entirely reduced to properties of the network interconnections, we want to take the network 

account seriously by investigating richer measures of centrality derived from the word 

association network. This offers a more direct approach to the problem, and allows us to gain 

insight into word processing.  

While there are numerous centrality measures that can be derived from networks, some 

are more important than others are since they correspond to previously proposed psychological 

mechanisms. The following measures therefore do not represent an exhaustive set, but are 

included based on their correspondence to previously reported indices of word processing 

advantages. Importantly, many of these network measures address an important shortcoming of 

their psychological proxies by providing a more principled way to distinguish different types of 

centrality by considering a more representative and directed network for the mental lexicon. A 
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first variable that affects word processing is set size or number of features. Set size is known to 

affect numerous tasks, including performance in extra-list cued recall and recognition (e.g., 

Nelson, Cañas, & Bajo, 1987; Nelson, McEvoy, & Schreiber, 1990) while number-of-feature 

effects have been reported in numerous semantic judgment tasks (Pexman, Holyk, & Monfils, 

2003). In the context of directed networks, set size corresponds as the out-degree of a node. 

A second class of variables is the one that accounts for richness effects in word processing 

such as semantic neighborhood size (Pexman, Hargreaves, Siakaluk, Bodner & Pope, 2008). This 

intuition is captured by the clustering coefficient measure, which can be calculated separately for 

each node in the network. This local clustering measure is related to in- and out-degree but is 

more sophisticated since it also captures information about the connectivity of the neighboring 

nodes. Moreover, in contrast to the number-of-feature measures, the clustering coefficient is not 

as strongly related to degree-measures since words with relatively few neighbors can still have a 

high clustering coefficient. 

The third type of measure takes centrality quite literally and provides a network proxy for 

centrality effects explained by variables such as age-of-acquisition (AoA). Semantic explanations 

of the AoA effects posit that words are processed faster because they are acquired earlier and new 

information is added in an incremental way. As a result, early words provide the foundations of 

later acquired ones. Betweenness is an example of a measure that matches this definition quite 

well, since it captures how many times you can encounter a node by traversing paths in the 

network. 

The last measure is inspired by the study by Griffiths, Steyvers, and Firl (2007) that used 

a letter phonological fluency task in which participants were asked to generate words starting 

with a certain letter during a short time span. They used a recursive centrality measure, in which 

centrality is not only influenced by the neighbors of a node, but also takes into account the 
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centrality of these neighbors. This measure provided better estimates of word generation 

frequency than other centrality measures such as simple word frequency. The centrality measure 

they used is called PageRank and is better known for indexing the importance of a page of the 

World Wide Web by Google (Page, Brin, Motwani, & Winograd, 1998). The PageRank measure 

represents an example of a family of measures that include feedback information such as 

eigencentrality. These measures have applications beyond lexical retrieval and are used to 

describe the effect of feature correlations in concept representation as well (Sloman, Love, & 

Ahn, 1998).  

One of the most widely used tasks to investigate visual word recognition is the lexical 

decision task (LDT). While early theories assumed that the role of semantic information was 

minimal, a number of studies have shown that semantic characteristics affect lexical retrieval, 

even when this information is logically not necessary. The study by Chumbley and Balota (1984) 

is of particular interest since the semantic involvement in the LDT was determined by using a 

measure of associativeness. The study included two experiments. In an initial experiment, 

participants generated associates to a list of words and reaction times were recorded. The 

averaged association reaction times for these cue words were then used in two follow-up 

experiments, and were found to be the most important predictor of decision latencies in the LDT. 

One of the surprising findings was that the number of associates had an effect in both follow-up 

experiments, albeit of a magnitude smaller than the association latencies. More interesting 

however, is the finding that the number of associations influenced association latencies as a 

suppressor. This means that including the number of associates in a regression together with the 

association latencies increases the contribution of the latter predictor. In the following section we 

will show how network based measures of meaningfulness or centrality not only provide an 

excellent account of LDT but also disentangles a puzzle in word processing in a way similar to 



23 

 

the result obtained by Chumbley and Balota (1984).  

 

Method 

Materials. We used the large-scale lexical decision dataset (DLP, Dutch Lexicon Project) 

compiled by Keuleers, Diependaele, and Brysbaert (2010) to investigate (a) the predictive value 

of psycholinguistic variables derived from the word association database, and (b) the effect of the 

multiple association procedure. The DLP database contains lexical decision times for 14,089 

Dutch mono- and dissyllabic words and non-words. Since some of the measures described in the 

next section can be more easily interpreted for nodes that have both in- and out-going links, we 

derived the largest strongly connected component for each of the networks. A strongly connected 

component is a subgraph that consists of a maximal subset of nodes in a directed network that 

have an in- and out-degree of at least 1 (within the subset itself). The derivation of the strongly 

connected component network resulted in the deletion of 4,725 nodes for G1, 2,237 for G2 and 10 

nodes for G3. Four different measures of centrality were derived for each of these networks.  A 

formal description of each of these measures is provided in Appendix 1. 

 

Results and Discussion 

The dependent measures consisted of the decision latencies for 5,918 words that were 

present both in the network G1, G2, and G3 and in the DLP database (Keuleers et al., 2010). 

Similar to Keuleers et al. (2010) only the z-RT scores for items with accuracy larger than .66 

were used. The network measures used in our analysis included weighted in-degree (k
in

), out-

degree (k
out

), clustering coefficient (C), betweenness (b) and PageRank. To investigate the 

explanatory power of network-derived measures compared to traditional measures used as 

independent variables in LDT, we added the word frequency and context diversity measures 
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reported by Keuleers et al. (2010) derived from Dutch subtitles (SUBTLEX-NL; Keuleers, 

Brysbaert & New, 2010), since these measures captured most of the variance in their study.  

 

------------------------------------- 

INSERT TABLE 2 

------------------------------------- 

 

Table 2 shows the correlations between the five centrality measures and the word 

frequency and context centrality measures.  All measures are significantly correlated, but do not 

represent a perfect correspondence. Although the correlations between the network measures are 

moderate to high, the correlations do show that these measures encode different information from 

the networks. Only k
out

 did not correlate strongly with most of the other centrality measures. 

Furthermore, the high correlation between PageRank and in-degree suggests that there may be 

problems differentiating between these two measures.  

Next, we investigated how network centrality explains decision latencies in the LDT task. 

A first question is whether including additional association response types originating from the 

later responses in the continued association task improves or dilutes the prediction of the RTs. To 

this end, we calculated the correlations between the reaction times and the network measures 

derived from G1, G2, and G3. The resulting coefficients are shown in the first four columns of 

Table 3.  

 

------------------------------------- 

INSERT TABLE 3 

------------------------------------- 
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All measures were significantly correlated with the decision latencies. The best prediction 

was found for k
in

 and the related measure of PageRank. Out-degree, which corresponds to the set 

size of a node, did not correlate as strongly compared to the other variables. The degree-based 

measures  k
in

, k
out

 , betweenness and PageRank show correlations that are quite similar regardless 

whether they are derived from G1 , G2, or G3. The added density in G3 results in slightly higher 

correlations compared to G1. This was most prominently the case for the clustering coefficient 

(C). Together, these findings suggest that adding additional links obtained through continued 

association does not hamper the prediction of decision latencies in LDT, but actually improves it.  

A second issue pertains to the question what network measures influence the LDT 

latencies. In many previous studies, centrality has been considered in terms of undirected 

networks, ignoring whether edges are in- or out-going. Instead, a nodes‟ centrality corresponds to 

the number of edges between nodes or the degree of that node. Directed networks do not conflate 

differential effects for in- and out-going edges, but provide separate measures of centrality using 

incoming and outgoing edges such as the in- or out-degree of a node. For example, De Deyne and 

Storms (2008a) have shown that centrality measures derived from undirected networks do not 

correspond as much with external centrality measures such as imageability and AoA compared to 

directed centrality measures. Comparing solutions for a directed and undirected version of the 

network allows us to constrain the meaning of accessibility or centrality processing advantages 

further by pinpointing these effects to the incoming edges of a lexico-semantic network. To 

investigate the effect of using degree instead of the directed measures of in- and out-degree, we 

calculated the degree of each node, ignoring whether the link was incoming or outgoing. The 

resulting correlation between degree and the DLP reaction times (ρ(5918) = -.64, p < .001) was 

weaker than the value reported for in-degree (ρ(5918) = -.67, p < .001; see Table 3)
 3

, but in line 

with previous findings that degree measures perform suboptimal because they incorporate the 
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out-degree of nodes (De Deyne & Storms, 2008a) . 

To investigate if these network measures can account for any additional variance once 

frequency and context diversity are accounted for, we also calculated the partial correlations after 

removing these two variables separately. The results in Column 5 and 6 of Table 3 show that the 

centrality measures capture additional structure. The differences between the measures closely 

follow the previous pattern with the best correspondence found for in-degree and PageRank and 

only weak effects of out-degree. In addition, we also performed a parametric analysis to 

investigate the relative contribution of the different predictors. To reduce nonlinearity, we took 

the square root of in-degree, betweenness and clustering coefficient. Next, both the dependent 

variable (decision latencies) and the independent variables (except out-degree and clustering 

coefficient) were log (base 10) transformed. We performed a regression analysis on the decision 

latencies, with in-degree, out-degree, betweenness, and the SUBTLEX-NL measures of word 

frequency and context diversity included as predictors. The contribution to the multiple 

correlation coefficient was determined by using a relative importance estimate (Grömping, 

2006)
5
. These predictors accounted for 54 percent of the variance in the decision latencies. The 

partitioning of the multiple correlation coefficient is shown in Figure 3. These results confirm the 

basic pattern shown in Table 3. In-degree accounted for most of the variance, followed by the 

SUBTLEX measures and betweenness. Out-degree and the clustering coefficient explained 

hardly any additional variance.  

------------------------------ 

INSERT FIGURE 3 

------------------------------- 

 

Together the results show that network measures derived from lexico-semantic networks 
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give insight into which words in the lexicon are more important and will be processed more 

efficient than other words. The present results indicate that considering only the primary 

association (G1) provides a good approximation compared to using a more denser networks 

consisting of both the secondary (G2) and tertiary association (G3) as well. Furthermore, in terms 

of absolute strength, the correlation coefficients are found to be similar to state-of-the-art 

frequency estimates (Keuleers et al., 2010). Interestingly, the current measure of in-degree 

manages to explain LDT latencies that are not accounted for by either word frequency or 

contextual diversity. In contrast to Griffiths, Steyvers and Firl (2004), our results failed to find 

convincing evidence for feedback effects as measured by PageRank, since this measure explained 

slightly less of the variance than that accounted for by in-degree. Still, richer effects of 

connectivity might play a role in the LDT task. This idea is supported by the fact that more 

complex measures of centrality such as betweenness and clustering coefficient capture additional 

variance in the data beyond context diversity or word frequency.  

 At a theoretical level, contrasting directed and undirected networks shows us that naive 

interpretations of semantic effects such as interconnectedness based on counting the number of 

connections (i.e., the degree, if the representation is an undirected network) or considering only 

the out-degree (or forward-strength) results in a degraded measure. This is caused by out-degree,  

since out-degree, or the heterogeneity of association responses, biases the number of incoming 

links as a measure of network centrality. Hence, it offers an explanation for the results of 

previous studies like the one by Chumbley and Balota (1984), where analyses with out-degree 

suppress the effects of other measures of centrality. 
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Study 2: Semantic Distance 

The previous section described how the local interconnectedness of a word in the 

association network indicates how easily it is processed. All these interconnections themselves 

represent a meaningful structure in which two different lexicalized concepts can be semantically 

related. This semantic proximity is an important source of structure in the semantic network and 

is assumed to be responsible for a host of findings in numerous tasks where semantic information 

is accessed, including semantic and associative priming (see Lucas, 2000; Hutchison, 2003, for 

recent overviews). In the following section, we opt for a more sensitive measure of semantic 

proximity in the form of direct similarity or relatedness judgments of concept pairs (e.g., Dry & 

Storms, 2009).  

While we have shown that the multiple response procedure results in more diverse 

associations compared to simply obtaining a larger number of single responses, it is not clear 

whether this increased diversity presents a more accurate approximation of the lexico-semantic 

information that might become activated in many semantic tasks. To investigate the effect of 

allowing multiple responses per cue, we derived distance measures for networks that include the 

primary (G1), secondary (G2) and tertiary (G3) association responses. These network distances 

were compared to four sets of empirical similarity ratings. The first set aimed at replicating the 

results of the classic Miller and Charles (1991) study, which replicated an earlier study by 

Rubenstein and Goodenough (1965). This study uses stimuli that are unconstrained in terms of 

semantic categories. It has been used as a standard benchmark in numerous previous studies (e.g., 

Budanitsky & Hirst, 2006; Durda & Buchanan, 2008; Jiang & Conrath, 1997; Resnik, 1999). 

In the following studies, semantic similarity rather than relatedness judgments were used. 
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In contrast to semantic relatedness, semantic similarity incorporates words that correspond to 

coordinate concepts (e.g., apple and lemon). In the second study pairwise similarity judgments of 

concrete nouns for six artifact and animal categories (Ruts et al., 2004; De Deyne et al., 2008) 

were collected. For each category, the concepts belong to a well-defined category in which 

concept differences are fine-grained. In these categories, the participants have to decide on the 

similarity between highly similar entities such as types of birds or fish. Unlike concrete 

categories, abstract categories are not hierarchically organized (Crutch & Warrington, 2005; 

Hampton, 1981). In addition, their representation will depend primarily on the way they are used 

in spoken or written discourse rather than on concrete, perceptual properties. Given that word 

associations incorporate both semantic and co-occurrence information, the prediction of 

similarity of abstract concepts should be similar to those of other concepts. To verify this, a third 

data set was taken from Verheyen, Stukken, De Deyne, Dry, and Storms (2012) in which the 

similarity of abstract concepts was rated by participants. 

A final data set was gathered to investigate semantic similarity in heterogeneous concepts 

that belonged to concepts of different categories in the artifact and the animal domains. For this 

purpose, an experiment was conducted to investigate the performance of the semantic network 

for a wider range of semantic concepts and to compare these results to the more detailed 

judgments made in a within-category context as presented in the other data sets.   

A challenge for the word association based network measures is that, in contrast to many 

studies that use semantic features, the word associations are context non-specific. This means that 

for a word like chicken, the associations will reflect the bird and the poultry sense of the animal, 

while this is not the case for feature ratings, which are often presented within a specific category 

context (e.g. birds). We therefore expect better performance on the first (Miller and Charles) and 

last data set which consists of an intermixed set of concepts belonging to different categories. 
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In all four data sets, we want to investigate to what extent word associations predict 

semantic relatedness and similarity.  More specifically, we want to investigate the contribution of 

the multiple response procedure as compared to associations from a discrete word association 

task.  

Method 

Participants. Thirty persons participated in the replication of the Miller and Charles 

(1991) study (indicated by MC), 97 persons participated in the Concrete Concepts study, 48 in 

the Abstract Concepts study and 30 in the Domain Study. All participants were students at the 

University of Leuven.  

Materials and Procedure. In the MC study, the stimuli consisted of 30 Dutch words 

which were close translations of the original English stimuli
4
. The 30 pairs were presented in a 

random order on a computer screen. The word position in the pairs was randomized. Participants 

were asked to enter a number between 1 (for totally unrelated) and 20 (for totally related). If one 

or two words of an exemplar pair were unknown, participants were asked to enter „-1‟.  

The concrete categories consisted of members belonging to six different Artifact 

categories (Clothing, Kitchen Utensils, Musical Instruments, Tools, Vehicles and Weapons) and 

five Animal categories (Birds, Fish, Insects, Mammals, and Reptiles). The number of members 

per category varied from 20 (Reptiles) to 33 (Kitchen utensils). The seven abstract categories 

consisted of Virtues, Art forms, Media, Diseases, Sciences, Crimes and Emotions. Each category 

consisted of 15 members.  For all 18 categories, the similarity between all possible pairs of 

exemplars was rated. The procedure was identical to the MC study except that the participants 

were instructed to rate similarity rather than relatedness. Full details are provided in De Deyne et 

al. (2008) and Verheyen, De Deyne, Linsen, and Storms (2011).  

Finally, for the Domain study, the stimuli consisted of members belonging to 6 different 
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Artifact categories and 5 Animal categories from the concrete natural category study. Since it is 

not feasible to present all pairwise combinations of all exemplars of these categories, we selected 

five exemplars from each of the artifacts and animals categories that cover a wide range of 

typicality. This way some members were central to the category representation (e.g., sparrow is a 

typical bird and thus a central member) while others were not (e.g. bat is an atypical member in 

the periphery of Mammals, and closely related to Birds). To increase the generalizability of our 

results, two replications of the above procedure were performed, resulting in a set A and B each 

consisting of 435 pairwise combinations using 30 artifact exemplars and 300 pairwise 

combinations derived from 25  animals. Each participant rated animal pairs or artifact pairs of 

either set A or B in multiple sessions, with the only restriction that no replication sets were 

allowed to be rated the same day. The procedure was identical to the previous studies except that 

now a total of 435 for the artifacts pairs and 300 animal pairs were presented. 

Next, we calculated semantic relatedness predictors by using the networks explained 

above. In contrast to the LDT study, the networks based on the weakly connected component 

were used. This guarantees that a maximal number of stimuli from the experiments are present 

since not all of them were generated as a response. The edge weights represented the estimated 

association strength as outlined in the section on constructing the semantic networks. Similar to 

previous studies (e.g., De Deyne, Navarro, Perfors, & Storms, in press), semantic relatedness was 

calculated using the cosine overlap between the pairs of words in each set. This measure was 

derived for the network consisting of the primary (G1), primary and secondary (G2), and all 

responses up to the tertiary response (G3). If a network framework provides a useful way to 

investigate semantic relatedness, we expect that one of its distinguishing features, namely the fact 

that the edges are directed, should be informative in semantic tasks as well. To investigate if this 

was the case we also derived an undirected version of the network with all responses (G3
’
) by 
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adding the network transpose to each individual directed network.  

 

Results and Discussion 

For each data set, the similarity ratings were averaged over participants.  Participants 

whose data correlated less than .45 with the average ratings were removed. This resulted in the 

removal of one participant in set B (Animals) in the Domain study. The reliability of the 

similarity ratings was calculated using the split half correlations with Spearman-Brown 

correction. The reliability was high in all experiments, rsplithalf = .98 for the MC study, between 

.85 and .96 for the concrete categories, between .93 and .96 for the abstract categories, and 

between .94 and .97 for the Domain set. 

By calculating all pairwise cosine indices, a full similarity matrix S was obtained 

consisting of of 12,428 x 12,428 similarity values. This matrix was used to extract similarity 

values for the pairs in each dataset. To check whether the proposed solution leads to sensible 

results, the similarity values were sorted. As expected, the most similar words were 

corresponding word forms, synonyms or close-synonyms. Examples are the neighbors for the 

Dutch word for cloud, (Dutch: wolk, wolken), wound (Dutch: wond, wonde, wonden), to rest 

(Dutch: rust, uitrusten), and doughnut (Dutch: oliebol, smoutebollen). This indicates that word 

associations correctly identify semantically similar entities at the very high end of the semantic 

relatedness scale. The agreement between the model derived similarity and the empirical 

similarities for the different data sets is shown in Table 4.  

------------------------------------- 

INSERT TABLE 4 

------------------------------------- 
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The highest correlations were found for domains with high variability in the set, such as 

the MC set (ρ between .86 and .91)  and the domain sets with Animals and Artifacts (ρ  between 

.41 and .73). The comparison between the networks G1, G2 and G3 show systematic improvement 

by adding later responses with sometimes substantially higher values for G3 (e.g., Diseases). In 

other words, the sparsity of the data affects semantic similarity and adding responses that are 

more heterogeneous improves the result. However, sparsity is not the only factor. When 

comparing the results for the directed network with all responses (G3) and the undirected version 

(G3’) which is considerably less sparse, the magnitude of the correlations with the similarity 

judgments are systematically lower for the undirected network (see the last column in Table 4).  

When comparing the different datasets those with the most diverse pairs and largest range result 

in a better correspondence between the subjective judgment and the network derived measures.  

This was indicated by the difference between the intra-category correlations for Animals and 

Artifacts and the experiment that compared members of these categories within a single task.  

While we expected a relative better performance for abstract categories compared to 

categories that rely on a lot of sensorial information such as Birds or Mammals, the results were 

very similar, on average .62 for the abstract categories and .61 for Animals with a network 

including all responses. Similarly, one could expect that fine-grained dimensions, especially for 

concepts that include numerous perceptual aspects, such as the Animal categories, are not as well 

represented in the association network as those of Artifacts that include situational aspects such 

as the agents, instruments, activities, etc. In this case, the results (an average of .61 for the 

Animal categories and .66 for the Artifact categories with G3) are in line with our hypothesis. 

Together these results indicate that relatedness derived from directed associative networks 

gives a good account of judged relatedness and similarity, especially in networks with sufficient 

density. In our case this was achieved by including asking participants multiple responses for 
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each cue. Furthermore, the results suggest that these measures are applicable across a wide 

variety of concepts that are traditionally hard to capture using other measures such as feature 

judgments (e.g., Dry & Storms, 2009). This is supported by (a) the results for the abstract 

concepts, which are at least as good as their concrete counterparts and (b) the finding that 

similarity derived from the word association network also captures broad distinctions across 

categories in domains for Artifacts and Animals. 

 

General Discussion 

One of the key criticisms on the use of word associations in word and semantic processing 

is the fact that the methodology does not allow the measurement of weak links (Aitchison, 2003). 

Furthermore, until now all word associations datasets have only covered a limited part of the 

human lexicon, and few attempts have been taken to fully exploit using a large-scale network 

representation to approximate human lexico-semantic knowledge. Our results show that using a 

multiple response procedure can solve some of the problems with weak links since the resulting 

network encodes responses that are more heterogeneous and is denser than a similar network 

derived using a single response free association procedure. Moreover, these heterogeneous 

responses encode useful information. First, in the case of word processing, results from a large-

scale lexical decision experiment showed that measures of lexical centrality accounted for an 

equal amount of the variance in these tasks compared to state of the art measures derived from 

spoken discourse (Keuleers, Diependaele, & Brysbaert, 2010) when later association responses 

were added. Moreover, there was no complete overlap between the predictors based on the word 

associations and spoken discourse. Second, in semantic tasks, the more heterogeneous networks 

that contain the later responses improve the prediction of relatedness judgments across a diverse 

set of concepts including abstract and concrete concepts. An additional source of evidence for 
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why a network with increased heterogeneity might be more a more accurate description of the 

mental lexicon comes from the studies on judged association strength (Maki, 2007). In these 

studies, participants systematically „overestimate‟ the strength with which weakly or non-

associated pairs are related in comparison with the associative strength observed in a single 

response association procedure. By asking multiple responses, weak associates that are 

qualitatively different from those given as a primary response (for instance, due to dominance 

effects) are made available.  

Apart from incorporating more heterogeneous responses, extending the coverage of cues 

in word association studies allows us to construct a network that is arguably more representative 

of our mental lexicon. A network where the nodes are connected with each other by directed 

weighted link has numerous advantages. Focusing first on lexical processing, the distinction 

between incoming and outgoing links in the lexico-semantic network has proven to be very 

valuable in determining the processing advantage in words in LDT. An accurate estimate of the 

number of incoming links depends on the number of cues, since only responses that are presented 

as a cue can be retained in a unimodal word association network. The number of different 

associates (i.e., the out-degree of a node) proved to be relatively unimportant compared to a 

node‟s in-degree.  

While in-degree proved to be a good predictor of LDT decision latencies, other network 

measures sensitive to the local density of the network, indicate additional processing benefits. We 

expect measures such as betweenness or clustering coefficient to be more relevant in tasks that 

have been used to show a processing advantage based on semantic properties of the words used. 

For example, a number of researchers have argued that the number of features determines how 

easily a word is processed (Pexman, Holyk, & Monfils, 2003; Pexman et al., 2008). Similarly, the 

density of a semantic neighborhood of a word also determines whether a word is recognized 
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faster or not (Buchanan, Westbury, & Burgess, 2001; Yates, Locker, & Simpson, 2003; Mirman 

& Magnuson, 2006). If a degree or out-degree measure is used, these studies might fail to find the 

predicted centrality effects. For example, in the study of Mirman and Magnuson (2006), semantic 

neighborhood measures were defined using semantic features, word associations and word co-

occurrences from text are used to predict the decision latencies in a semantic categorization task. 

Only the semantic neighborhoods for word associations did not significantly predict the RTs from 

the categorization task. The measure used was the number of associates from the USF association 

corpus (Nelson, McKinney, Gee, & Janczura, 1998) and thus equals the out-degree of a node. A 

similar measure (‟number of different associates‟) was used as a predictor in the classic paper by 

Chumbley and Balota (1984). Even more recently, Locker, Simpson, and Yates (2003) used a 

lexical decision task in which semantic set size was determined by the number of associates of a 

word. In this study, words with a large semantic set size showed a processing advantage over 

words with a small set size. However, our results suggest that the effect found might have been 

underestimated in these studies since the measures used were the out-degree of a word rather than 

its in-degree. While we also found a smaller but significant effect of out-degree, the interpretation 

of this effect will depend on the association procedure used. Most of the studies in English have 

relied on the USF database, in which a single response is asked, resulting in an underestimate of 

set size or out-degree. In fact, ignoring in-degree as a measure of centrality is hardly surprising, 

since an accurate estimate of in-degree depends on the total number of the cues in the database 

and the USF database is the only recent word association collection that incorporated a somewhat 

reasonable number of cues.  

Together, this suggests that using a network based approach allows the test of a number of 

new and explicit hypotheses in lexical and semantic aspects of word processing. Apart from 

centrality effects in lexical processing, using a directed network also helps refine questions about 
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how humans process the meaning of words. For instance, when comparing directed and 

undirected networks, our results show that the former result in a better prediction of semantic 

relatedness. It is important to note however, that our similarity measure has been primarily 

chosen for ease of interpretation, but other measures might be better suited when using network 

representations. Since similarity judgments can be asymmetric (Tversky, 1977) and the 

magnitude of semantic priming effects also indicate possible asymmetric strength relationships 

between prime and targets, it seems natural to use an asymmetric similarity measure as well. 

Furthermore, the similarity measure used here only considers direct overlap between the 

neighboring nodes of two nodes whose similarity we wish to quantify.  Similar to spreading 

activation, it might be useful to consider indirect and mediating links in calculating this 

similarity. Both topics are currently under investigation in our lab and preliminary results indicate 

that network-based similarity measures that incorporate these principles further improve results 

across a number of tasks (De Deyne, Navarro, Perfors & Storms, in press). 

Some thoughts on the size of the network. A network derived from word associations 

might provide a reliable approximation of the human lexico-semantic system if it represents a 

critical proportion of the words known by most humans. While the current study, consisting of 

more than 12,000 cues, represents the largest study of its kind, one could argue that even this 

number of cues does not suffice to approach the knowledge in adult speakers. Depending on the 

methods of counting (e.g., whether or not one distinguishes production and recognition), 

estimates of the English lexicon size in adults vary from 16,785 (D‟Anna, Zechmeister, & Hall, 

1991) to 58,000 (Nagy & Anderson, 1984) basic words. Nevertheless, there are numerous reasons 

why a number around 12,000 begins to approach the level of knowledge possessed by people.  

First, the above estimated number of significant words in the lexicon of an individual 

might be exaggerated. After reviewing numerous studies, Hazenberg and Hulstijn (1996) 
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concluded that when proper names, abbreviations, and compound words are not included, the 

vocabulary size of a Dutch university undergraduate is in the range of 14,000 to 17,000 words. 

Furthermore, the same researchers investigated the number of words that would have to be 

known in order to understand the content of first-year reading materials in Dutch. Their results 

showed that knowing 11,123 base words was sufficient to apprehend 95 percent of word tokens 

in these materials. The coverage we obtained by reducing the number of types to the cues 

indicated that at least for the word associations the coverage was around 80 per cent. Given the 

fact that we have not considered the lemmas for these responses, nor corrected any spelling 

mistakes, this number is an underestimate. In addition, some of the cues were added as part of 

other studies and varied in word frequency. This might also lower the coverage somewhat.  

In sum, the proposed lexico-semantic network will not cover all possible words, but in 

terms of cumulative frequency, the coverage should allow the extraction of centrality measures of 

word processing that are less biased than ever before. We believe this will be especially valuable 

for numerous studies in word recognition and semantic cognition. Our results show that a large 

portion of the variance in LDT can be explained by in-degree, a measure derived from a directed 

semantic network, which is distinct from other lexical availability measures such as word 

frequency. Given that these centrality measures affect nearly all word processing tasks, including 

word naming, we believe that the network-derived measures of availability might present a 

theoretical and practical alternative that deserves further investigation.  Similarly, we expect that 

in semantic studies, such as priming, word associations not only inform the forward association 

strength,  but given a rich enough network, also backward strength is informative. Moreover, as 

more mediated connections between two concepts are considered it might turn out that previous 

distinctions between associative and semantic priming represent a continuum (cfr., McRae, 

Khalkhali, & Hare, 2011). The networks that include secondary and tertiary responses should 
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provide both better estimates of forward and backward strength effects in associative priming, 

while the distributional overlap measure of relatedness between two words has potential to 

account for previously reported findings of semantic priming, especially when incorporating 

secondary and tertiary responses.  
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Appendix 1 

Degree Centrality. 

Each node has an in-degree k
in 

and an out-degree k
out

 corresponding to the number of 

incoming and outgoing arcs in a directed network. For the corresponding undirected network, 

nodes have a certain degree k, which is the number of edges of a node. The degree of the nodes is 

therefore also a measure of the importance of a certain node in the network. When only the 

adjacency structure is considered (i.e., the presence or absence of edges, regardless of their 

weight), k
out

 corresponds to the set size of the node. In our study, no weighted version of out-

degree is calculated, since this measure only reflect the number of associations collected for each 

cue. This contrasts with our use of the in-degree measure, which is based on the weighted sum of 

incoming edges. Subsequent studies show that this measure is always more informative than the 

traditional in-degree measure derived from the adjacency matrix. For the in-degree we then have 

  
             

where wij indicates the connection weights between node i and j. Out-degree or set-size is 

calculated as the number of different outgoing links: 

  
              

where aij is equal to 1 if a link between i and j exists and 0 otherwise. 

 

Clustering Coefficients.  

A slightly more complex measure that is derived from the in- and out-degree of nodes is the 

clustering coefficient C (Watts & Strogatz, 1998). For a node i, this is the proportion of the edges 

with neighboring nodes divided by the maximal number of edges within this neighborhood. 
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Intuitively, the clustering coefficient measures the likelihood that two nodes that have a mutual 

neighbor are also neighbors themselves. For an unweighted undirected graph, C is derived as 

follows (cfr. Watts & Strogatz, 1998):  

   
 

 
    

            

where ti corresponds to the number of triangles around node i calculated as follows: 

 

    
 

 
                 

 

For a weighted directed graph, the formula can be extended by taking the weighted 

geometric mean of the directed triangles around i (see Fagiolo, 2007). Finally, a normalized 

coefficient Ci’ is obtained by multiplication with the degree of i divided by the maximal possible 

number of triangles between a node i and all neighbors N.  

 

Betweenness.  

Path-centrality indicates how often a node is located on the shortest path between other 

nodes in the network. One measure of path centrality is betweenness (b). If a node with a high 

level of betweenness were to be deleted from a network, the network would fall apart into 

otherwise coherent clusters. Unlike degree, which is a count, betweenness is normalized by 

definition as the proportion of all shortest paths that include the node under study. The 

betweenness centrality (b) for a node i is defined as (Freeman, 1978):  

 

   
 

          
 

      

   
       

             

 

 

where ρhj corresponds to the number of shortest paths from h to j passing through i and 
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the denominator is the number of shortest paths from h to j for all possible pairs h,j.  

 

Feedback Centrality.  

The PageRank measure represents an example of a family of measures that include feedback 

information such as eigencentrality. For an unweighted network the measure is most commonly 

derived in matrix terms (see Langville & Meyer, 2006, for a full description) 

 

                

 

where A is the adjacency matrix and D is a diagonal matrix with the out-degree of each node 

as elements of the diagonal. This formula contains one free parameter, α which was set at 0.85, 

according to convention (Griffiths, Steyvers & Firl, 2007, Langville & Meyer, 2006). 
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Footnotes 

1 
The website can be accessed at http://www.kuleuven.be/associations/ 

2  
Both Figure 1a and 1b are truncated because adding the full number of responses (300 

and 100 respectively) would include missing and unknown responses which would bias the 

entropy curves.  

3 
Here, the in-degree measure was defined as the count of in-coming edges, rather than the 

sum of the edge weights. This is a more appropriate choice in combination with the out-degree 

measure which is also based on a count rather than a sum.  

4 
Since the word woodland does not have a translation in Dutch, two stimuli pairs 

containing this word were not used.  

5
 The relative importance method does not suffer from the same problems associated with 

a traditional stepwise regression where different orders of the predictors can result in different 

outcomes by taking into account the various permutations in which the predictors can appear in 

the equation. The pmvd procedure proposed by Feldman (2005) was used in determining the 

relative contribution of the predictors to the multiple correlation coefficient. See Grömping 

(2006) for more details about the beneficial performance of this measure. 

  



51 

 

 

Table 1 

Density, Average path length (L) diameter (D) and Clustering Coefficient (C) network properties 

for the University of South Florida network (USF, Nelson et al., 2004), Leuven network (Leuven-

2008, De Deyne & Storms, 2008) and G1, G2 and G3. 

Network n density (%) L  sd(L) D C  sd(C) 

G1 12482 0.219 4.14 (1.22) 31 0.341 (0.263) 

G2 12482 0.432 3.38 (0.87) 26 0.321 (0.174) 

G3 12482 0.644 3.06 (0.69) 24 0.311 (0.147) 

USF 4982 0.574 3.90 (2.14) 62 0.451 (0.374) 

Leuven-2008 1424 2.400 3.27 (1.77) 47 0.634 (0.314) 
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Table 2 

Correlations (ρ) between the network G3 derived centrality measures (clustering coefficient (C), 

in-degre (k
in

), out-degree (k
out

), betweenness (b) and Pagerank),and the SUBTLEX-NL measures 

for word frequency (WF) and contextual diversity (CD). 

 

  N = 5,918  1 2 3 4 5 6 7 

1 C 

 

-.63 -.65 -.76 -.57 -.49 .51 

2 k
in
 

  

.21 .70 .96 .60 .61 

3 k
out

 

   

.68 .17 .21 .23 

4 b 

    

.67 .46 .47 

5 Pagerank 

     

.57 .58 

6 WF 

      

.99 

7 CD 

       Note: All correlations significant p < .001 (two-tailed t-test) 
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Table 3 

Correlations (ρ) between DLP reaction times (RT) and centrality measures (clustering coefficient 

(C), in-degree (k
in

), out-degree (k
out

), betweenness (b) and Pagerank derived for G1, G2 and G3. 

The last two columns indicate partial correlations after removing effects of word frequency (WF) 

and context diversity (CD).  

       

N = 5,918 G1 G2 G3   G3-WF G3-CD 

C  .44  .47  .49   .25  .23 

k
in

 -.66 -.67 -.67  -.45 -.44 

k
out

 -.19 -.21 -.19  -.08 -.05 

b  -.45 -.50 -.50  -.30 -.29 

PageRank -.63 -.64 -.65   -.45 -.44 

Note: All correlations significant, p < .001 (two-tailed t-test) 
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Table 4 

Correlations (ρ) between semantic relatedness (MC) or similarity and the model inferred 

semantic relatedness for directed networks G1, G2, G3 and undirected network G
’
3.  

Set Category n G1 G2 G3 G’3 

MC 

 

30 .88 .91 .91 .86 

       Abstract Virtues 105 .70 .76 .77 .56 

 

Emotions 91 .52 .55 .57 .45 

 

Art forms 91 .55 .59 .65 .48 

 

Media 105 .55 .60 .66 .50 

 

Crimes 91 .49 .54 .59 .43 

 

Sciences 105 .36 .41 .47 .32 

 

Diseases 105 .24 .43 .61 .05† 

 

M 

 

.49 .55 .62 .40 

       Animals Birds 406 .39 .49 .49 .26 

 

Insects 300 .56 .62 .66 .45 

 

Fish 231 .67 .76 .75 .66 

 

Mammals 435 .44 .50 .54 .26 

 

M 

 

.51 .59 .61 .41 

       Artifacts Clothing 378 .63 .65 .65 .55 

 

Kitchen Utensils 496 .41 .47 .51 .33 

 

Music Instrument 325 .50 .51 .50 .21 

 

Tools 325 .48 .55 .59 .45 

 

Vehicles 435 .63 .68 .69 .57 

 

Weapons 171 .65 .65 .66 .65 

 

M 

 

.55 .59 .60 .46 

       Animals set A 253 .59 .67 .71 .58 

 

set B 253 .65 .70 .73 .56 

       Artifacts set A 435 .61 .65 .63 .59 

  set B 435 .44 .56 .61 .41 

 

Note: All correlations significant p < .05 except for †, two sided t 
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Figure Captions 

 

Figure 1. Entropy as a function of increasing observed token counts over primary, secondary, 

and tertiary response with variability indicated by the grey area and average entropy by the 

black line (a) and average entropy separated for the three response positions (b). 

Figure 2.Coverage of response types in the various directed graphs. 

Figure 3. Relative importance contribution and confidence intervals for the prediction of the 

LDT decision using the network measures in-degree (k
in

), out-degree (k
out

), betweenness (b) 

derived for G3 and the SUBTLEX-NL derived measures of word frequency (WF) and context 

diversity (CD).  
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