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Abstract

Similarity plays an important role in organizing the semantic system. However, given that

similarity cannot be defined on purely logical grounds, it is important to understand how

people perceive similarities between different entities. Despite this, the vast majority of

studies focus on measuring similarity between very closely related items. When considering

concepts that are very weakly related, little is known. In this paper we present four

experiments showing that there are reliable and systematic patterns in how people evaluate

the similarities between very dissimilar entities. We present a semantic network account of

these similarities showing that a spreading activation mechanism defined over a word

association network naturally makes correct predictions about weak similarities, whereas,

though simpler, models based on direct neighbors between word pairs derived using the same

network cannot.

Keywords: word associations, similarity, semantic networks, random walks.
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Structure at every scale: A semantic network account of the similarities between unrelated

concepts

Similarity plays a major theoretical role in the study of human cognition, underpinning

theories of categorization (Goldstone, 1994; Hampton, 1998; Medin & Rips, 2005), inductive

reasoning (Osherson, Smith, Wilkie, Lopez, & Shafir, 1990), memory (Rips, Shoben, & Smith,

1973) and so on. However, surprisingly little is known about how humans perceive similarity

between items outside of a very narrow range. The majority of studies of natural language

concepts examine the relations between APPLES and ORANGES, concepts described at the basic

level, or PENGUINS and BATS, concepts which are related at the domain level (animals). Using

such studies, psychologists have shown no qualms in asking people to compare APPLES and

ORANGES, but – to borrow from the Romanian version of the same idiom – have shown a

remarkable reluctance to ask people to compare GRANDMOTHERS and MACHINE GUNS. In

other words, beyond basic categories or domains, little is known about how the knowledge in

the semantic system as a whole is held together.

The reason for this paucity of data is not difficult to understand. Even within familiar

domains, similarity itself is not a primitive or invariant construct: there is a variety of

empirical results showing developmental effects and context effects on similarity (Estes,

Golonka, & Jones, 2011; Medin, Goldstone, & Gentner, 1993; Medin & Rips, 2005). Given

this, one might reasonably take the view that outside of these narrow contexts people would

find it impossible to find any meaningful similarities, and if so, the comparison between very

different items would be arbitrary and nonsensical (Fillenbaum & Rapoport, 1971).

In this more general context, it seems far more obvious that similarity is inherently

unconstrained. Any two entities have a potentially infinite number of features or predicates

in common, making it always possible to construct post hoc explanations for why any items

are similar to each other (Goodman, 1972; Medin et al., 1993). In order to place sensible

constraints on similarity, psychologists must rely on the assumption that similarity is assessed

only with respect to a small set of represented features or predicates. As noted by Medin and
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Ortony (1989, p.180) “both tennis balls and shoes share the predicate not having ears but it is

unlikely that this predicate is part of our representation of either tennis balls or shoes.”

Within a well-defined category, it seems quite sensible to think that perceptual properties

(Goldstone, 1994) or the ability to align different object characteristics (Markman & Gentner,

1993) would supply the relevant constraints. Such constraints might in fact make it easy to

make an APPLES to ORANGES comparison. It is far less clear that a GRANDMOTHERS to

MACHINE GUNS comparison will be equally constrained.

In this paper we consider this issue from an empirical and theoretical perspective.

Empirically, it is unclear whether there are any systematic patterns in how people assess the

similarity between very dissimilar entities. If there are in fact systematic patterns, it is not

obvious that theoretical models of similarity are well-suited to capturing them. For instance,

in geometric models of stimulus similarity, the similarity between items is assumed to decay

exponentially as a function of psychological distance (Shepard, 1987), suggesting that

similarities among very different items are all essentially zero. Alternatively, in richer

theory-based views of conceptual structure (Murphy & Medin, 1985), it is assumed that

people rely on an intuitive theory to guide the comparison. When presented with very

dissimilar items it is not clear that people have any intuitive theory that would allow them to

make non-arbitrary judgments.

On the other hand, a number of semantic models seem ideally suited to making

predictions about weak similarities acquired from language exposure. For instance, it is

well-documented that semantic networks have a “small world” structure, with on average

short paths and a high degree of clustering (De Deyne & Storms, 2008a; Steyvers &

Tenenbaum, 2005). A spreading activation process defined over such a network (e.g. Collins

& Loftus, 1975) could make good predictions about weak similarities. Alternatively, latent

semantic analysis (Landauer & Dumais, 1997) or topic models (Griffiths, Steyvers, &

Tenenbaum, 2007) might also perform well, insofar as they extract structure from weak

patterns of covariation in linguistic corpora. In neither case, however, do we know whether
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the models actually do make the right predictions because the empirical data are missing.

The structure of this paper is as follows. In the first half of the paper we present a series

of four experiments revealing that people’s judgments about weakly related items are indeed

systematic, and that people can offer sensible explanations for their choices that are not at all

idiosyncratic. In the second half of the paper we introduce a computational model that makes

good predictions about weak similarity judgments and the time it takes to assess them. Our

approach is based on a spreading-activation network account that builds on the original work

by Collins and Loftus (1975). It also builds on other studies on memory and psycholinguistics

that have used large-scale explicit graphs or networks to explain a range of phenomena, from

retrieval (Lerner, Ogrocki, & Thomas, 2009), lexical development (Hills, Maouene, Maouene,

Sheya, & Smith, 2009; Steyvers & Tenenbaum, 2005) to phonetic processing and word

learning (Vitevitch, 2008). While the availability of new methods and theoretical advances in

studying graphs has already made a considerable impact on cognitive science in general

(Baronchelli, Ferrer-i-Cancho, Pastor-Satorras, Chater, & Christiansen, 2013), we will show

that a network approach is ideally suited to explain how weakly related concepts might be

represented in the semantic system and compare this approach with some alternatives in the

discussion.

Experiment 1: Do weak similarities exhibit a stable structure?

In this experiment we focus on whether weak similarities have any stable structure that

is shared across individuals. While most people might agree on the manner in which a

TEACHER and a COP are similar, it is not at all clear whether any such agreement would exist

when trying to assess the similarities between TEACHER and CUP. In order to investigate this,

we rely on a forced choice task in which people are presented with three words and asked to

indicate which two words are most related. This triad task is considered to be more suitable

than paired similarity judgments on rating scales (e.g. De Deyne, Peirsman, & Storms, 2009;

Dry & Storms, 2009; Hampton, 1998), as the third word provides a context to base similarity
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judgments upon. Doing so prevents anchoring biases inherent with rating scales (Tversky &

Kahneman, 1973) which might be even more pronounced for weakly related pairs. The task

is related to other forced choice and sorting tasks that have also been used in the literature

(e.g., Navarro & Lee, 2002; Storms, Dirikx, Saerens, Verstraeten, & De Deyn, 2003).

Method

Participants. Thirty-five native Dutch speaking psychology students (28 female, 7

male) participated in exchange for course credit during a collective testing session at the

University of Leuven. The average age was 21 years (SD = 5.0). The data from three

participants were removed because their reaction times for reading the three triad words and

making a decision were faster than 500ms for over 50% of the trials.

Stimuli. The stimuli were 300 nouns grouped into 100 triads. The words were taken

from a set of 12,428 Dutch words used as cues in the word association task described in

De Deyne, Navarro, and Storms (2013). All items in a triad were constrained to have (a)

approximately the same word frequency and concreteness and (b) to not be directly

associated to each other in a semantic network based on word-association data (described in

the second part of the paper). Respecting these criteria, the words were otherwise randomly

selected. Word frequency was calculated using log-transformed lemma frequencies in the

CELEX database (Baayen, Piepenbrock, & van Rijn, 1993) and concreteness was derived from

data reported by De Deyne and Storms (2008a). The complete list of stimuli including

English translations can be found in Appendix A1.

Procedure. On each trial, three words were presented at the corners of an equilateral

triangle, as shown in Figure 1. Each of the words was randomly allocated to one of the

corners. In addition, the orientation of the triangle was randomized for each participant by

rotating a triangle with one of its sides orthogonal to the screen in 20 degree steps (20, 40,

60 etc.) resulting in an orientation exemplified in Figure 1 which remained constant across

all trials. During each trial, a red circle appeared in the centre of the triad. When the subject
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J
K

L

Figure 1. Example triad stimulus used in Experiment 1, showing English translations of the Dutch

words used. If the participant believed that TEACHER and CUP are the most related pair, they pressed

the L key.

pressed the space bar, the word were shown at the corners of the triangle and the fixation

circle turned green.

The instructions were accompanied with an illustration similar to Figure 1 and

consisted of the following text (translated from Dutch):

In this study we want to investigate to what degree Dutch words can be considered related.

We will present a triangle on the screen with a red circle in the middle. Press the space key to

show the word. Next, three words will be displayed which represent three possible pairs. Press J,

K, or L to select the most related pair. Note that the goal is to evaluate the meaning of these

words and not the similarity between other things like letters or rhyme. Think of relatedness in a

broad sense. Example 1. COLD - HOT - SQUARE. Here the first two words are related. Example 2.

MOIST - COLD - COOL. Here the last two words are related. For some combinations the

relatedness can be very weak. In these situations it might not be easy to choose a related pair.

Even then, try to make a decision based on which words fit together based on what you think.

The participants were asked to focus on the meaning of words rather than their

orthographic similarity or phonological relatedness, and were asked to do their best even if

the task seemed difficult. Also note that the first example contained an antonym, to inform

the participants we cared about relatedness and not strict similarity. Responses were

registered using a computer keyboard. In addition to the preference choice, decision latencies

were also registered. At the beginning of each trial, the triad triangle was presented without
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any words displayed, until the participant pressed the space bar. When the space bar was

pressed, the words were revealed and the circles shown in Figure 1 were labeled with the

letters J, K and L. Participants responded by pressing the appropriate letter key on an

AZERTY keyboard. The task took less than 15 minutes to complete.

Results and Discussion

The choice preferences revealed a surprising degree of agreement among participants.

If people’s preferences were truly idiosyncratic, then we should expect that all responses

should be equally plausible, and for very large samples, the choice frequencies should be

roughly 33% for all items. Because the modal frequency is by definition the largest of the

observed frequencies, its expected value is slightly higher than 0.33 even when the choices

are purely random.1 The observed pattern of responses is very different: in most cases there

was a clear preference for one of the three options. This is illustrated in Figure 2, which plots

a histogram of the modal choice frequencies across all 100 triads for 32 participants. The

median value of the modal choice frequency is 0.63, which suggests that many preferences

are above the expected modal frequency at chance level of 0.42.

To test whether these preference proportions are due to chance, we calculated Bayes

factors for the largest mode (i.e., the most popular choice) and the goodness of fit for all

three choice proportions.2 The first test considers the presence of a suspiciously large mode

and the results are shown in the left panel of Figure 3(b). Using a Bayes factor threshold (BF)

of ≥ 3:1, “modest evidence” of such a mode was present for 67 of the 100 triads. Under a

more stringent threshold (BF ≥ 10:1) evidence was found for 60 of the 100 triads, and under

a very stringent threshold (BF ≥ 100:1) evidence was present for 47 of the 100 triads. The

second test, which considers goodness of fit for the choice distribution over the three

alternatives, is consistent with these results. The results are displayed on the right panel of

Figure 3(b). The Bayes factor reached the “modest evidence” threshold (BF ≥ 3:1) for 77 of

the 100 triads, the more stringent (BF ≥ 10:1) threshold for 69 of the 100 triads, and the
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Figure 2. Distribution of the modal responses (i.e., the most frequently chosen pair) based on the 100

triads in Experiment 1. If preferences were truly idiosyncratic, one would expect that choice

frequencies should be around 42% for all or most items with a sample size of 32 judgments. This is

indicated by the vertical line in the Figure. That they are not is evidence that there is more agreement

in these weak similarity judgments than one would expect by chance.

very stringent (BF ≥ 100:1) threshold for 52 of the 100 triads.

What regularities are people picking up on when they all select the same modal

response? Examining individual triads is, unfortunately, not very helpful. For instance, the

triad (BUTTER, TRAIN, SADDLE) was one that yielded strong evidence for a suspiciously large

mode (most people said that TRAIN and SADDLE were most similar). One can always come up

with post-hoc justifications of this choice – perhaps it is because they both are thematically

related to something involving transportation? perhaps because they are similar in size? –

but these have the flavor of “just-so” stories. It is also difficult to see how to generalize

inferences about one triad to another: the first triad reveals little about why most people said

that HYENA and SOMERSAULT were more similar in the triad (HYENA, SOMERSAULT, RADISH).

The additional three experiments in this paper are designed to more rigorously explore the

question of what people are doing when they agree on weak similarities.
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Figure 3. Experiment 1 Bayes Factors for the Mode (left Figure a) and the Goodness of Fit (right

Figure b) for the three choices. Preferences on the right of the dotted vertical line indicates reliable

evidence (BF > 10). In both cases, around two-thirds of the trials showed reliable evidence for a

suspiciously large mode (representing more-than-expected agreement about which two items of a

triad are more similar).

Experiments 2-4: Exploring the structure of weak similarity

In light of the results from Experiment 1, it seems clear that there is some structure or

some source of regularity underpinning the judgments people make about weakly related

items. Experiments 2 through 4 are designed to further explore the nature of that structure.

Experiment 2 constructs a clustering solution based on a small subset of items; the resulting

structure helps to highlight the root and nature of the weak similarities. Experiment 3

explores the reasons that people give when asked to justify their choices. Finally, Experiment

4 provides a point of comparison by investigating people’s judgments about strongly related

items using the same experimental paradigm.
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Experiment 2: How is weak similarity organized?

The results from Experiment 1 suggest that there is something non-arbitrary about the

manner in which people perceive similarities between very different entities. However, it

does not provide much of an insight into what those regularities might be. Choices might rely

heavily on broad ontological distinctions such as living/nonliving (see e.g., Garrard,

Lambon Ralph, Hodges, & Patterson, 2001; Tallent, Weinberger, & Goldberg, 2001), or they

might rely on valence information (see e.g., De Deyne, Voorspoels, Verheyen, Navarro, &

Storms, 2014; Deese, 1965), or many other possibilities besides. With this in mind,

Experiment 2 adopts an exploratory approach. Using the same triadic choice task we

calculate all pairwise similarities among a subset of the words and use a hierarchical tree to

visualize the structure that emerges.3

Method

Participants. A total of 120 native Dutch speaking psychology students (92 females,

28 males, mean age of 19 years old, SD = 1.61) participated in exchange for course credit.

Following the same exclusion criteria as Experiment 1, a total of three participants were

removed.

Stimuli. This task used a set of 25 nouns varying in degree of abstractness, listed in

Appendix B1. Some belonged to natural categories and others to artifact categories. For 25

stimuli, there are (25
2 ) = 300 unique pairs and (25

3 ) = 2, 300 unique triads. Each participant

provided preferences for 100 of these triads. We used a balanced incomplete block design

(see, Burton & Nerlove, 1976) to ensure that all triads appeared with similar frequency across

the whole experiment. Overall, 400 of the 2,300 possible unique triads were tested. To

ensure overlap between participants, these 400 triads were divided into four sets of 100

triads each (where each set was judged by 30 participants). Within a set of 100 triads, each

stimulus occurred 12 times in combination with two other words. This design ensured both

that there was substantial overlap between the items participants saw, while at the same time
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reflecting a reasonable sample of the set of logically possible triads.

Procedure. The procedure was identical to Experiment 1.

Results and Discussion

As in Experiment 1, people showed consistent preferences in their choices. The median

value of the modal choice frequency is 0.58, which suggests that many preferences are above

the expected modal frequency at chance level of 0.43 (for 29 participants, due to exclusion of

3 participants) and 0.42 (for 30 participants). The qualitative shape of the distribution of

modal frequencies in Experiments 2, 3 and 4 is essentially identical to the pattern from

Experiment 1 shown in Figure 2. To avoid repetition we have omitted the corresponding plots

for the later experiments. The test of suspiciously large modes resulted in qualitatively

similar, though somewhat attenuated, results as Experiment 1. There was modest evidence of

suspiciously large modes (BF ≥ 3:1) for 238 of the 400 triads, more stringent evidence (BF ≥

10:1 ) for 178 of the 400 triads, and very stringent evidence (BF ≥ 100:1) for 123 of the 400

triads. Similarly, the goodness of fit test for all preferences under a modest threshold resulted

in evidence for 247 of the 400 triads, a more stringent threshold for 203 of the 400 triads,

and a very stringent threshold for 151 of the 400 triads. Altogether these results replicate

those of Experiment 1: most triads were only weakly related, yet people substantially agreed

about which pairs belong together.

Since these stimuli covered a variety of words (including abstract, natural kind and

artifact concepts), it is possible to test whether a simple heuristic might explain people’s

choices. If so, broad distinctions should become apparent by inspecting the similarity

structure in the preference data. In order to visualize the structure implied by participant

choices we constructed a matrix of pairwise similarities S. The similarity between any two

words was calculated by counting the number of times that pair of words was chosen as the

most similar, and dividing it by the number of occasions in which that pair was presented as

part of a triad. Next, we extracted an additive tree representation using the algorithm
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proposed by Lee (1999). This algorithm allows us to estimate the number of internal nodes

based on BIC complexity rather than determining this number a priori.4

The best tree model (i.e., the lowest BIC) consisted of seven internal nodes and is

shown in Figure 4. The tree distances correctly identify the modal response in 310 out of 400

cases. The variance accounted for by this model was 45%, which is fairly low (around 70% is

more typical). This contrasts with the findings for more homogeneous domains, like animals

(Lee, 1999), where an optimal solution with 3 internal nodes accounts for 70% of the

variance. This thus suggests that the similarity structure in our data isn’t easily captured.

The tree structure is fairly sensible, creating groups of entities corresponding to

superordinate categories such as animals (POODLE, WORM, TIGER, CAMEL, SWALLOW and EEL)

and geography (MOUNTAIN, FIELD). The tree also picks out categories of items that share a

common very salient feature (e.g., a BOMB and THUNDER are both loud and violent). To the

extent that people’s choices reflect these categories, the results seem unremarkable: it is

hardly a surprise that people would decide that TIGERS and CAMELS are more similar to each

other than either is to BUTTER.

However, people also often rely on thematic and ad hoc connections when judging

similarities, even though thematic relations in this study emerged by coincidence from the

pairings of a small and diverse set of words. Such thematic connections are only sometimes

captured by the additive tree solution. Some connections are apparent in the tree: BREATH is

especially important to an ATHLETE, the sound of THUNDER can be loud like the explosion of a

BOMB, a CRUST goes in the GARBAGE, and so on. Yet many others are not: for instance, for the

triad FIELD – BOMB – WORM, participants have a clear preference for FIELD – WORM, whereas

the tree suggests a grouping of FIELD – BOMB.

In general, while capturing the broad distinctions such as animals or artifacts, the tree

fails to capture many of the instances where people rely on a thematic relation between a

living thing and artifact or abstract concept. This suggests, in keeping with other work (Estes

et al., 2011; Lin & Murphy, 2001), a preference for thematic relatedness even if a presumably
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Figure 4. Visualization of the additive tree representation using 7 internal nodes based on the

relatedness choices in Experiment 2.

more simple taxonomic relationship exists. Overall, between the relatively poor fit of the

additive tree representation and its failure to identify many thematic relationships, this

experiment suggests that a small set of heuristic principles such as valence or living vs natural

kinds cannot fully account for weak similarity judgments in the triadic preference task

(although they may partially do so).

Experiment 3: How do people explain their choices?

In light of the results from Experiment 2, it seems clear that at least part of how people

make judgments about randomly chosen items is to pick out items that belong to the same

broad domain. However, it is also clear that this simple heuristic fails to capture a large

proportion of the variance in their judgments. What else are they doing, and why? To

address this question, Experiment 3 showed people stimuli from the same broad domain,

thus eliminating the ability to use broad domain to drive decisions. We also asked them to

provide reasons for their choices. Do people who make the same choices tend to offer the

same reasons for those choices? Or do people find it difficult to explain why they made their

decisions?
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Method

Participants. A total of 66 native Dutch speaking psychology students (58 females, 8

males, average age 19, SD = 1.0) participated in exchange for course credit.

Stimuli. The triads were constructed using the stimuli from De Deyne et al. (2008),

which consisted of a set of animals containing five categories (birds, fish, insects, mammals

and reptiles) and a set of artifacts containing six categories (clothing, kitchen utensils,

musical instruments, tools, vehicles and weapons). Using these items, a set of 63 triads were

constructed, 28 for the animals and 35 for the artifacts. These triads were constructed such

that no item appeared in more than one triad, and no triad contained items from the same

category. That is, MONKEY–TROUT–SPARROW is an allowed triad, but MONKEY–DOG–SPARROW

would not be allowed because it contains two mammals. To match the length of the previous

experiments and to decrease strategic processing that could result from the relatively small

number of categories, a total of 37 triads were randomly selected from Experiment 1. The

stimuli used in this experiment are presented in Appendix C.

Procedure. The first part of the experiment was a triadic choice task identical to

Experiments 1 and 2. It was completed by all participants. The second part was presented

only to 20 of these participants: after completing the triad judgments they were shown the

same triads with their previous choices highlighted and asked to provide an explanation (free

response) for why they thought the chosen pair was more related.

Results and Discussion

Consistent with Experiments 1 and 2, people’s choices were non-arbitrary. The median

value of the modal choice frequency is 0.59, which suggests that many preferences are above

the expected modal frequency at chance level of 0.39 on the basis of 66 participants. A test

for suspiciously large modes found modest evidence for 73 of the 100 triads (BF ≥ 3:1), 68

out of 100 triads for a more stringent threshold (BF ≥ 10:1) and 58 out of 100 triads under a

very stringent threshold (BF ≥ 100:1). For the goodness of fit test, modest evidence was
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found for 79 out of 100 triads (BF ≥ 3:1), 75 out of 100 triads under the more stringent

threshold (BF ≥ 10:1) and 67 out of 100 triads under the very stringent threshold (BF ≥

100:1).

The same pattern of results was obtained comparing the animals, artifacts and random

triads that were part of this experiment. For example the goodness of fit test under a

stringent threshold showed comparable evidence for random triads (27 out of 32 triads) and

animal triads (23 out of 28) which in both cases was a bit more extensive than the results for

artifacts (25 out of 40 triads).

Next, we evaluated the interpretations participants made for their own preferences for

each of the 100 triads. Overall, people were able to provide a justification 86% of the time,

and among the reasons offered there appeared to be a substantial amount of agreement

across participants. For instance, most people judged SOUP and DIARRHEA to be more similar

to each other than either is to DRESS. The reasons offered tended to be very similar as well,

including justifications such as both are running, running, fluid, both are fluid and watery. To

quantify this intuition, two independent raters were asked to sort the participant responses

into groups of similar reasons. The raw agreement between the two raters was 81%

(SD = 13%), corresponding to a substantial Cohen’s kappa (κ= .759, z = 51.2, p < .001).

According to Rater 1, there were an average of 4.99 distinct explanations given for any given

triad (SD = 1.8), whereas for Rater 2 the average was 3.13 (SD = 1.86). However, these

numbers overstate the heterogeneity of people’s responses as many of these explanations

occur only once whereas others can be highly frequent.

We also assessed the homogeneity of people’s explanations for a response by calculating

the modal response frequency. If this is higher than 1, it would suggest that participants

agree upon the underlying explanations rather than making completely idiosyncratic

response interpretations. This was calculated averaged over triads for each of the three

choice preferences and excluding the “no relation” explanations. For Rater 1, the modal or

most frequent interpretation was 6 (SD = 3.52), 2.31 (SD = 3.52) for the second most
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frequent choice preference and 1.1 (SD = 0.9) for the least frequent choice preference. For

Rater 2, the modal interpretation was 7.16 (SD = 3.92) for the most frequent choice

preference, 2.51 (SD = 1.68) for the second most frequent choice preference and 1.22

(SD = 1.00) for the least frequent choice preference. Obviously these values are smaller for

the less frequent response preferences as we already observed that these frequencies are

skewed. Focusing just on the most frequent choice preferences, distinguishing the remote

animal, artifact and random triads from Experiment 1, showed that the nature of the triad

does not affect the results strongly, and if anything more homogeneous explanations were

given for the random triads from Experiment 1 (modal frequencies being 6.25, 4.63 and 7.50

for respectively animals, artifacts and random triads for Rater 1 and 6.96, 5.90 and 8.91 for

animals, artifacts and random triads for Rater 2).

Regardless of the nature of the triad or the choice participants made in the first part of

the experiment, or the rater, the modal frequency is higher compared to complete

idiosyncratic explanations. In conclusion, this extends our previous finding, namely that

people show considerable agreement for their triadic choices, to agreement for the

interpretation of their choices.

A final way to evaluate the nature of the weak similarities is to apply a semantic coding

scheme to people’s explanations of why they chose a given pair. The coding scheme was

based on a simplified version of the Wu and Barsalou ontology (Brainerd, Yang, Reyna,

Howe, & Mills, 2008; McRae, Cree, Seidenberg, & McNorgan, 2005; Santos, Chaigneau,

Simmons, & Barsalou, 2011; Wu & Barsalou, 2009) which was later adapted for word

associations and as described in De Deyne and Storms (2008a). We are interested only in the

five main distinctions in this ontology defined in Appendix D. This means that for example

only a taxonomic relation is coded, rather than specifying different taxonomic relations

(superordinates, coordinates or subordinates). This resulted in five major types of

explanations: taxonomic (e.g., for the chosen pair GUITAR-SPOON and the explanation both

are objects), lexical (e.g., CARAVAN-CELLO, both start with C), thematic (e.g., VULTURE-TIGER,
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live in Africa), feature (e.g., BLOUSE-TOWEL, made of fabric), and valence (e.g., WITCH-FAT,

bad things).

The results are shown in Figure 5. Regardless of the type of triads (Animals,Artifacts, or

Random), the majority of the explanations were thematic, followed by shared features and

taxonomic explanations. These results are consistent with Experiment 2; both indicate that

many people relied on thematic relationships when judging these similarities. Moreover, the

results also closely follow previous studies where word association responses were classified

according to the same ontology: the same ordering for the three major classes (Thematic >

Feature > Taxonomic) was obtained (De Deyne & Storms, 2008a). Further examining the

different types of triads shows very similar results for both animal and artifact triads. The

only notable difference was the higher percentage of thematic explanations for the random

triads. Potentially this reflects the larger distances between words in these triads which

makes it harder to come up with shared features or a shared taxonomic level. Most

importantly, the types of explanations for remotely related items cannot be accounted for by

general factors like shared lexical valence information. Taxonomy could in theory also

explain distances between any arbitrary pair of words (cf. WordNET, Fellbaum, 1998), but at

least at a subjective level, this information was less prominent. Instead, agreement seems to

be explained mostly in terms of a shared theme, a point which we will revisit in the General

Discussion.

Experiment 4: Comparison to strong similarities

In Experiments 1 and 2 we considered genuinely “weak” similarities, with words

selected largely at random from Dutch nouns. Experiment 3 incorporated somewhat stronger

similarities in which all items within a triad belonged to the same general domain (e.g.,

animals). In Experiment 4, we make the constraint even stronger by restricting items to

belong to the same basic level category (e.g., birds). Doing so ensures that, across all four

experiments, we have a broad range of similarities to consider when fitting theoretical
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Figure 5. Coding of post-hoc participant explanations using the semantic ontology in Experiment 3 for

animal, artifact and random triads.

models to the data in the second part of the paper.

Method

Participants. A total of 51 native Dutch speaking psychology students (40 females, 11

males) participated in exchange for course credit. The average age was 18 years (SD = 0.8).

Using the same criteria as in the previous experiments, two participants were removed.

Stimuli. A total of 100 stimuli were selected from the concept norms in De Deyne

et al. (2008) for five animal categories (bird, fish, insects, mammals, and reptiles), six artifact

categories (clothing, kitchen utensils, musical instruments, tools, vehicles, and weapons), two

food categories (fruits, vegetables), and two activity categories (professions and sports). Each

item in a triad occurred only once in the stimulus set, and all triads contained items from the

same basic level. A list of these stimuli can be found in Appendix E1.

Procedure. The procedure and test conditions were identical to Experiment 1.

Results and Discussion

As in the other experiments, people showed a strong degree of agreement. The median

value of the modal choice frequency is 0.70, whereas the expected modal frequency at chance

level of 0.40 on the basis of 49 participants. For the test of suspiciously large modes and
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using the same qualitative interpretation of BF, we found modest evidence (BF ≥ 3:1) for 85

out of 100 triads, 76 of the 100 triads under a more stringent threshold (BF ≥ 10:1) and 68

out of 100 under a very stringent threshold (BF ≥ 100:1). For the goodness of fit test modest

evidence was found for 88 of the 100 triads, evidence for 83 out of 100 triads under more

stringent criteria and evidence for 74 of the 100 triads under very stringent criteria.

Since the main purpose of this experiment is to explore how the model presented in the

next section predicts people’s judgments at different scales (from remote to within-domain to

within-category), we defer further discussion of the experiment to the model performance.

First we explain our model for weak similarity in the next section.

A network model for weak similarities

The most surprising characteristic of our data is the fact that people have such strong

agreement regarding weak relationships. When asked to select the most similar pair from an

apparently arbitrary triad such as CUP–HAIL–TEACHER, people do not choose randomly nor do

they choose idiosyncratically. In fact, the extent of this agreement across people is

approximately the same magnitude when the relationships are weak as it is when they are

strong. In Experiments 1 and 2 where the similarities were weakest the proportion of people

choosing the most common response was 63% and 59% respectively. Forcing all items to

belong to the same domain (Experiment 3) made little difference, with the agreement rate

being 59%. A more extreme manipulation in which all items in a triad belonged to the same

basic level category (Experiment 4) only produced a modest effect, with the agreement rate

being 70%.

Given that there is consistency among people’s responses, it is natural to ask whether

this consistency is predictable. Is it possible to construct a semantic model that produces the

same choices that people do? In this section we show that a simple spreading activation

mechanism within a semantic network model naturally produces the same pattern of

behavior as human subjects, whereas simpler models that rely on shared features (indicated
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by common associative neighbors) are unable to do so.

Approximating semantic networks with word associations

The approach we take to modeling weak similarity is a fairly standard spreading

activation model (Collins & Loftus, 1975; Collins & Quillian, 1969). In this approach,

concepts are represented by nodes in a semantic network, and edges connect concepts that

are directly related to one another. When one concept is activated, this activation extends to

linked concepts. Network models are widely used within cognitive science (Baronchelli et al.,

2013; De Deyne & Storms, 2008b; De Deyne, Voorspoels, Verheyen, Navarro, & Storms, 2011;

Hills et al., 2009; Hutchinson, 1989; Schvaneveldt, Dearholt, & Durso, 1988; Sloman, Love,

& Ahn, 1998; Steyvers & Tenenbaum, 2005; Vitevitch, 2008), and while they are by no means

the only method for describing how word meaning could be represented (e.g., Griffiths,

Steyvers, & Tenenbaum, 2007; Jones & Mewhort, 2007; Landauer & Dumais, 1997; Navarro

& Griffiths, 2008; Navarro & Lee, 2004; Tversky, 1977) they strike the balance between

interpretability and flexibility appropriate for the current purposes.

From a methodological standpoint, the critical question is how the semantic network

should be approximated. One prominent approach is to take word co-occurrence information

and apply statistical tools to extract the latent semantic structure (e.g., Griffiths, Steyvers, &

Tenenbaum, 2007; Landauer & Dumais, 1997). The difficulty with this approach is that it is

not clear how meaning is derived from lexical co-occurrences as word co-occurring in

language reflect many other factors besides semantic relationships: for example, pragmatic

communicative rules ensure that people say “green banana” to specify that a banana is green,

but do not say “yellow banana” when a banana is yellow. Notwithstanding the many virtues

of lexical co-occurrence data (Jones, Willits, Dennis, & Jones, 2014), the relation between

word association responses (which do not have these pragmatic constraints) and text

co-occurrence is moderate at best (De Deyne et al., 2013; Szalay & Deese, 1978) suggesting

that lexical co-occurrence does not constitute the purest measure of the associations that exist
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between words in the mind. For now, we will not focus on text corpus derived measures

although we revisit this alternative in the general discussion.

As argued previously (e.g., De Deyne, Verheyen, & Storms, 2015), a more direct

approach is to use (observed) word association data rather than corpus-derived word

co-occurrences as a proxy for (latent) semantic associations. In this approach, we construct a

weighted adjacency matrix G in which the value of gi j counts the number of times that word

j is given as an associate of word i. In order to make this work, a large data base of word

associations is required. For our application, the word association data come from a study

consisting of N = 12,428 cue words and over 3 million responses, in which each participant

was given a short list of cue words and asked to generate three different responses to each

cue (see De Deyne & Storms, 2008b; De Deyne et al., 2011).

Using these data, we can construct two qualitatively different graphs, denoted G1 and

G123. For both graphs, we extracted the largest component by only keeping those cues that

were also given at least once as a response. This way all words can be reached by both in-

and out-going links. The graph G1 only counts the first response given by the participant. Its

largest component includes N = 11,957 nodes and only 0.23% of the possible links. The

graph based on G1 is the more conventional approach, and its sparsity is comparable with

previous word association studies (Nelson, McEvoy, & Schreiber, 2004). The second graph,

G123 counts all three responses. Because it is based on more responses, the largest component

used to construct G123 is somewhat denser: G123 included N = 12,408 nodes and 0.64% of

possible links.

Previous work on associative strength indicates that the frequency of responses itself

does not reflect a direct measure of associative strength of the responses, but a nonlinear

function describes the relation between strength and response frequency (see p 10, Deese,

1965). In this study, associative strength between a cue and response was derived by

calculating the conditional probability of a response given a cue. This way, each cue had the

same marginal probability. In other words, the total strength of each row of P sums to one.



WEAK SIMILARITY IN SEMANTIC NETWORKS 23

Next, we calculated associative strength as the positive point-wise mutual information measure

(see Jurafsky & Martin, 2008).

PMI+(pi| j) = max

�

0, log2

�

p(i| j)
n
∑

j p(i| j)

��

(1)

In this equation, the denominator takes into account how often a response is given for all

cues. This way, responses that are given very frequently for many cues are considered less

informative than responses that are given for only a small number of cues. Similar to

text-corpus based studies, we expect this approach to positively affect the performance in

semantic tasks (Bullinaria & Levy, 2007), and as we will see later on, also allows us to limit

the number of links along which information spreads in the graph.

Using semantic networks to predict weak similarity

Similar to previous lexico-semantic approaches derived from text (Recchia & Jones,

2009) or word associations (Borge-Holthoefer & Arenas, 2010; De Deyne et al., 2009; Deese,

1965; Steyvers, Shiffrin, & Nelson, 2004) the similarity between pairs of words is expressed

as the distributional overlap of word co-occurrences or shared neighbors in a semantic graph.

Focusing on the case of word associations, this means that words with a similar distribution

of responses will have similar meanings. Typically the number of different associations is

limited, which means that for any arbitrary pair of words, there simply is no overlap or it is

limited to just a few shared responses. Here we propose that additional information can be

inferred from the indirect paths between words in the network, which might still result in

meaningful similarity indices even if two words do not share any common neighbors.

Given that “association” and “similarity” are highly related measures, it seems natural

to expect that focusing on a distributional measure derived from shared neighbors would do

a good job of predicting strong similarities, such as that between LION and TIGER. These are

highly similar concepts, with many properties in common. It seems much less plausible to

believe that it would account for weak relationships. In Experiment 2, for example, we

discussed the similarity between ATHLETE and BREATH that emerges from the data. This
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similarity is easy to spot even though these are not directly linked. Yet it is not difficult to

construct a relationship between the two. An athlete does exercise, and doing exercise will

cause one to start panting and lose one’s breath. This line of reasoning would map onto an

associative chain such as ATHLETE → EXERCISE → PANT → BREATH. Although there is no

direct line between the two concepts, it is easy to see how a spreading activation mechanism

(e.g., Collins & Quillian, 1969) would uncover such a connection, and thereby be able to

capture the relationship between these items. More generally, by exploiting the structure of

the semantic network, a spreading activation model might be able to infer additional

information through indirect links which might capture answers similar to humans when

presented with an arbitrary triad such as CUP–HAIL–TEACHER. In particular, we expect that

the distributional overlap consisting of not only directly shared associations but also indirect

neighbors that are not shared is considered when evaluating remote triads.

To quantify this idea we adapt the Katz index (Katz, 1953) which closely resembles a

decaying random walk approach given the fact that rows in P sum to 1 and thus corresponds

to a random walk transition matrix (see also Abott, Austerweil, & Griffiths, 2015;

Borge-Holthoefer & Arenas, 2010; Griffiths, Steyvers, & Firl, 2007; Kemeny & Snell, 1976;

Leicht, Holme, & Newman, 2006). When a node is activated it starts a random walk (or many

such walks) through the graph, activating nodes that the walk passes through. From this

perspective, similarity is related to the number and length of the paths through the network

that connect two nodes. If there are many short paths that connect two nodes, then it is easy

for a random walk through the graph to start at one node and end at the other; these nodes

are then inferred and added to the distribution over which to calculate similarity. Formally,

the measure is specified by beginning with the adjacency matrix containing associative

strengths P introduced before. It is useful to first consider an iterative procedure to derive the

random walk similarities as follows (Newman, 2010). Consider a walk of a maximum length

r = 3 where I is the identity matrix and the damping parameter α < 1 governs the extent to

which similarity scores are dominated by short paths or by longer paths:
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Grw
(r=1) = I

Grw
(r=2) = αP+ I

Grw
(r=3) = α2P2 +αP+ I

(2)

During each iteration, indirect links reflecting paths of length r are added to the graphs.

Longer paths receive lower weights because of the exponent r of α. The same expression can

also be computed more directly by taking the inverse of P and considering the limit case with

infinity long paths:

Grw =
∑∞

r=0(αP)r = (I−αP−1) (3)

Viewed in terms of the underlying random walk, the probability that the walk

terminates (i.e., the spreading activation dies out) at any given time step is 1−α.5 The

probability of an associative chain surviving across r links is thus αr . The smaller the value of

α, the larger the contribution made by very short paths. This “decay” parameter serves an

important theoretical role. As noted by Minkov (2008), if this parameter is omitted the model

becomes vulnerable to one of the major criticisms of the spreading activation mechanism,

namely the fact that the entire network is quickly activated (e.g., Ratcliff & McKoon, 1994).

Note that under this approach the path lengths can be asymmetric (i.e., p(i| j) 6= p( j|i)). At

this point, the random walk graph Grw combines paths of various lengths obtained from the

random walk. However, these paths do not conform to the associative strength measure

proposed earlier (rows do not sum to one and many paths occur for many cues and are

therefore uninformative). To be able to compare the random-walk augmented Grw with P, we

apply the positive point-wise mutual information measure PMI+ transformation and

normalize the values to conditional probabilities to derive Prw from Grw.

Illustrating the contribution of indirect paths and activation decay

To illustrate how indirect paths are obtained, what the role of α is, and how it interacts

with other aspects of our approach in more detail, we calculated the predicted links by the
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random walk procedure in Equation 3. Consider the word TIGER. Participants will associate it

with words like STRIPES, WILD, ANIMAL, ZOO and so on. The random walk process will infer

additional indirect links as well, and depending on the value of α, it will do so taking into

account shorter or longer paths. At the same time, due to the small world properties of

associative networks (see De Deyne & Storms, 2008a; Steyvers & Tenenbaum, 2005), we

know that the network is highly clustered around hubs (i.e. highly connected nodes like

WATER,SUN,GOOD, etc). A first consequence is that many paths go through these nodes and be

quite similar regardless of the identity of the cue. A second consequence is that given the

short path lengths of the semantic network where each node can be reached in about three

steps, the entire network quickly becomes activated.

Table 1

Top 10 novel indirect paths inferred for the word TIGER and various values of α for unweighted

and PM I+ weighted paths. The network density D is indicated on the second row.

Unweighted paths Weighted paths

α= .25 α= .50 α= .75 α= .95 α= .25 α= .50 α= .75 α= .95

D = 1.00 D = 1.00 D = 1.00 D = 1.00 D = 0.01 D = 0.03 D = 0.08 D = 0.10

animals animals animals fun leopard leopard leopard lioness

bear bear beast nice safari safari hyena hyena

safari beast bear comfy bear hyena lioness cougar

beast safari dog warmth zebra lioness safari leopard

leopard leopard safari friends giraffe zebra zebra devour

dog dog forest pleasure fox giraffe devour jungle

fox fox leopard love devour pheasant Jerry can

ape rabbit fun enjoyable pheasant carnivore carbine

wolf forest warmth enjoy carnivore cougar pheasant

rabbit jungle sun sun jaguar bird of prey bird of prey
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At α= .95, the unweighted paths become biased towards nodes that have high

in-strength (i.e. weighted incoming links). In other words, the most highly weighted new

links are strongly correlated with the most popular responses. In this example,

r(p( j|TIGER), p( j)) = .83 for α = .95 and approaches 1 as α approaches 1, whereas for the

weighted paths, such a bias is absent: r(p( j|TIGER), p( j)) = .02 for α= .95.6 The frequency

bias is general and manifest at high α-values in such a way that the contribution of the

original cue node from which the walk departs becomes negligible. This frequency bias has

been previously documented by Newman (2010) and often is countered by down-weighting

the path weights as a function of the number of in- or out-going links. Rather than simply

dividing the weights by their total strength, we applied the same PM I+ weighting function as

before as it has the additional benefit of keeping the graph relatively sparse since only

positive weights are added. To illustrate implications of this, we calculated the density of Grw

for the values of α in Table 1 as well. Indeed, as can be seen from the last four columns of

Table 1, the additional words activated for various values of α suggest a sensible result where

the density of the network remains small and additional information can be inferred from a

relatively small number of new paths.

Deriving a network-based similarity measure

So far we have shown that we can infer sensible links through a mechanism of

spreading activation. Similar to other studies, we will first assume that the similarity between

pairs of words is not reflected by the shortest path between two words, but by looking at the

distributional overlap of the paths they share (Borge-Holthoefer & Arenas, 2010; De Deyne

et al., 2015; Deese, 1965). Given a semantic network, how does one measure the

distributional similarity between two entities? In this paper we consider the widely used

cosine measure of similarity (e.g., De Deyne et al., 2015; Landauer & Dumais, 1997; Steyvers

et al., 2004), which measures the extent to which two nodes have the same neighbors. Two

nodes that share no neighbors have a similarity of 0, and nodes that are linked to the exact
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same set of neighbors have similarity 1. Formally, the cosine measure is as follows. Each row

of the original associative strength matrix P or the matrix with indirect paths Prw is

normalized by the L2 norm, which gives us a N such that ni j = pi j/
q
∑

j pi j
2. The matrix of

pairwise similarities S is given by

S= NNT (4)

By normalizing the dot product by the L2 norm it takes into account frequency differences

that might exist between these distributions.

Using Prw yields a global similarity measure as opposed to a local similarity measure as

in the former, two words are similar if they have a similar distribution of paths (now

including indirect paths). For both the global and local similarity measures the computed

similarity values for each triad are normalized to sum to 1. This allows the model predictions

to be directly comparable to the empirical choice probabilities, which also sum to 1. This is

equivalent to assuming that the network activation level corresponds to the response strength

and using Luce’s choice rule (Luce, 1959) to construct choice probabilities.

When no indirect paths are inferred through the random walk introduced before, this

local shared neighbors similarity rule is very similar to the widely-used common features

similarity model (Tversky, 1977). The key thing to recognize is that it depends solely on the

local structure of the graph: the similarities between two entities is assessed by looking only

at the items to which they are immediately linked. This simple measure does not rely on any

deep structural characteristics of the network but provides a theoretically-important baseline.

By relying only on the raw data itself, it provides a measure of the extent to which word

association data are in fact “similarity in different clothes.” To the extent that the local cosine

measure provides a good account of the similarity data, we might conclude that the word

association task is just redescribing similarity, and the exercise of explaining one using the

other is circular. Moreover, if it is the case that network similarity measures that rely on

indirect paths cannot provide a better account for our data than the local cosine model, we
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should conclude that the semantic network formalism provides no added value, and the raw

data are doing all the heavy explanatory work.

How well does the network model perform?

In this section we evaluate the performance of the network similarity model. In the first

part we look at the performance of the cosine measure and the spreading activation measure

for all four experiments, and show that – as one might expect – the cosine shared neighbor

measure can account for strong but not weak similarities, whereas the spreading activation

method accommodates both. We follow this with a consideration of the role played by the α

parameter in controlling network similarities. Finally, we present a more detailed

investigation that explores the qualitative difference between strong similarity and weak

similarity by inferring which paths contribute most strongly to different kinds of judgment.

Overall performance of different models

To evaluate how well the remote triad choice preferences from our experiments can be

captured using the semantic network models, we calculated the correlations between the

network-derived similarities and the empirical choice preferences for all four experiments. In

order to compare our approach to more traditional word association studies and investigate

the role of network density, we compare the performance of these different measures when

the network is constructed from only the first response given by each person (i.e., the graph

G1) and when it is constructed using all responses (i.e., the graph G123). For all experiments,

the α parameter for the random walk model was set at 0.75 as this provided good results

regardless of nature of the task. A systematic evaluation of this parameter follows in the next

section.

The results are shown in Figure 6, and a brief inspection reveals the important findings.

In almost every case the spreading activation model outperforms the cosine similarity model,

and in almost every case the denser graph G123 produces better performance than the sparser

graph G1. To compare the correlations within both types of graphs, Z-scores for correlations
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Figure 6. Correlations and 95% confidence intervals for the triad preferences and the cosine and

random walk model’s predictions for all four experiments. As a baseline, the horizontal lines indicate

the average person’s correlations to the mean population preferences. The random walk spreading

activation measure outperforms the cosine measure (except for category-level triads), supporting the

idea that the cosine measure accounts for strong but not weak similarity judgments while the random

walk measure can account for both. In addition, the denser network (G123) generally outperforms the

one constructed from only the first response given by each person (G1).

with a shared third dependent variable (Steiger, 1980) were used. For G1, the correlations

were significantly higher in all experiments (Z = −7.51, Z = −9.53, Z = −4.46, Z = −3.88,

p < .001 for each of the four experiments).

For the denser graph G123 the differences were significant for Experiment 1

Z = −6.46, p < .001, Experiment 2, Z = −5.47, p < .001, Experiment 3, Z = −5.35, p < .001

but not for Experiment 4, Z = −0.03, ns. The one exception to this pattern is revealing: when

modeling the strong similarities collected in Experiment 4 with the richer data set G123, the

cosine measure performs comparably to the spreading activation measure. In keeping with

our theoretical prediction in the previous section, the value of the semantic network

representation is most apparent when considering weaker relationships and weaker

connections.
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The role of activation decay

The spreading activation model contains a single free parameter α, which can be

interpreted as a measure of how the spreading activation tends to die away over time. From a

modelling perspective, it is important to consider the role that this parameter plays in

accommodating the empirical data. The results in Figure 6 show the performance of the

spreading activation model at the best fitting value of α. To illustrate how α affects model

performance, Figure 7 plots the performance of the spreading activation model for all values

of α between 0.1 and 0.95. In general, the model performs better at larger values of α,

highlighting the fact that the spreading activation model outperforms the cosine model

because the former can make good use of more (cf. the density in Table 1) and longer

associative paths through the semantic network.
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Figure 7. Role of spreading activation parameter α (x-axis) in the prediction of the triadic preferences

in four experiments for the single-response graph G1 (left) and the three-response graph G123 (right).

The α parameter is a measure of how quickly the spreading activation dies away over time; higher

values of α take longer to die away. Overall, performance improves for larger α, suggesting that the

improved performance of the spreading activation model occurs because it can make good use of

longer associative paths through the network.
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Comparing strong and weak similarity using “small world walks”

A well documented characteristic of human semantic networks is that they have a small

world structure where a network shows a high degree of clustering and at the same time has

shorter paths between any pair of nodes than would be expected given the size of the

network (De Deyne & Storms, 2008a; Steyvers & Tenenbaum, 2005). In practice, most pairs

of concepts can be connected using three or fewer directed links. As mentioned earlier, after

just three steps, any node can be activated and additional paths with lengths longer than

three (see Equation 3) might contribute little information.

A first way to test whether paths of limited length could account for the performance of

the random walk is by using the iterative method in Equation 3 for a small number of

iterations. Because now the length of the paths is constrained, the frequency bias is less of a

concern and the inferred indirect paths would not require an additional weighting step. If

indirect paths of length 2 or 3 also aid in the prediction then we would expect that the

distributional overlap between two words incorporating indirect paths would improve the

prediction over the overlap measure based on direct neighbors.
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Figure 8. Correlations (y-axis) and 95% confidence intervals for distributional similarity derived on

limited walks up to a length of 4 (x-axis).

The procedure for deriving similarity indices was identical as before and α was again

fixed at 0.75. For the results we will focus on the denser graph G123 as it produces superior

results in all experiments so far. The correlations for walks up to a length of 4 are shown in

Figure 8. In each of the experiments we see a considerable improvement by adding indirect
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paths of length 2, regardless of whether the triads are remote, belong to the same domain or

the same category (comparing correlations for paths of length 2 versus length 3 for

Experiment 1 to 4: Z = −6.52, Z = −7.40, Z = −5.00, Z = −5.74, all p < .001). Adding

paths of length 3 somewhat improves the prediction for weak triads in Experiment 1 and 2

(comparing paths of length 3 and 4 were significant only for Experiment 1 and 2: Z = −5.35,

Z = −4.37; all p < .001). Paths of length 4 contributed modestly yet significantly in

Experiment 1 (Z = −2.1, p = 0.036), did not further improve the predictions in Experiments

2 and 4 and adversely affected the prediction in Experiment 3 (Z = 7.69, p < .001). Overall,

the results are very similar to the local overlap measure in Figure 6 and the previous random

walk for paths of unbounded length.78

At this point, we have examined indirect similarity by inferring additional links and

computing the distributional overlap between the distributions of links of the words in the

triads. This provides a good account of the empirical data, whereas the overlap between

directly shared features or neighbors can only account for the findings for related triads in

Experiment 4. A second possibility is that the inferred paths themselves could provide us with

a way to derive how strongly related the triad pairs are. Such a path-based measure allows us

to generalize the paths based on outgoing edges considered in Equation 3 to incoming edges

which might also contribute to predicting remote triads.

i j

1

2

3

4

5

6

7

8

Figure 9. All eight possible paths of length ≤ 3 that connect a source node i and target node j in the

graph G. Note that because the paths are directed, there are multiple distinct ways to construct paths

of the same length (e.g., Paths 2 – 4 are all of length two).
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If activation is allowed to flow in both directions, only eight qualitatively distinct ways

of connecting two nodes exist for paths of a maximum length of three. These are depicted in

Figure 9. For example, Path 1 corresponds to the situation where there is a direct link

between the two nodes (i.e., i→ j), and the probability with which such a path is followed is

captured by the transition matrix P itself. This is the only way in which a path of length one

can be formed. In contrast, paths of type 2 and type 3 are the same length, but have a

somewhat different interpretation. Path 3 depicts an “associative chain” in which a walk

starts at node i, moves to an intermediate node k, and then ends at node j (i.e., i→ k→ j).

The probability associated with any path of this kind can be computed by taking the matrix

product PP. By way of comparison consider path 2, which depicts the “shared associate”

situation in which nodes i and j both send links to a third node k (i.e., i→ k and j→ k). The

probabilities for paths of type 2 are computed by taking the product PPT .

In the original spreading activation model, the various paths are implicitly weighted by

their lengths, using a single parameter α to do so. This approach allows no distinction to be

made between similarities that people draw on the basis of a “shared association” (Path 2)

and those formed via “associative chaining” (Path 3). A more detailed view of how people

assess weak similarities can be obtained if we consider all eight paths separately, and estimate

a separate weight β for each path type. Formally, this produces the following graph

augmented with indirect paths of maximum length r = 3, where
∑

i βi = 1 and 0< βi < 1:

Gr=3 = β1P (paths of length r = 1)

+β2PPT + β3P2 + β4PT P (paths of length r = 2)

+β5P3 + β6P2PT + β7PPT P+ β8PT P2 (paths of length r = 3)

(5)

This approach unifies overlap measures like the local overlap measure to those taking

into account indirect links. In particular, it allows us to compare direct association (Path 1),

local overlap (Path 2) with longer paths up to a length of 3.

In line with the spreading activation account, we expect a relatively higher contribution

for longer paths in tasks with remote triads in the first three experiment compared to



WEAK SIMILARITY IN SEMANTIC NETWORKS 35

Figure 10. Path weights for G123 across all four experiments. Numbers on the x-axis of the embedded

graphs correspond to the path numbers, and the height of the bar graph reflects the weight of that

path. The most important paths are indicated by arrows with weights proportional to the thickness of

the line. As expected, the longer paths (5–8) make a higher contribution for the tasks with more

remote triads (Experiment 1 – 3). For Experiment 4, which focused on category-level judgments,

shorter paths matter relatively more (although the longer paths still play an important role).

Experiment 4. To assess whether the indirect paths make a contribution that is statistically

reliable, we bootstrapped the path weights in Equation 5 by sampling triads without

replacement for 10,000 bootstrap samples. In all four experiments, only a few types of paths

were significant. Across all experiments, there was a consistent contribution of longer paths.

As expected we also find a significant contribution for both direct associations and paths of

length 2 for the category triads in Experiment 4. Fitting this more detailed model

distinguishing different paths to all four Experiments produces the results depicted in

Figure 10.

Consistent with our theoretical perspective, we find that the longer paths (i.e., Paths

5–8) are less important in the experiment that relied on strong similarities (Experiment 4)
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than in the other three experiments, which assessed weaker relationships. Across all

experiments we find a particularly strong effect for Path 6 and to a lesser extent Path 2, both

of which can be described as a form of “shared association” similar to the local distributional

overlap discussed previously. This makes sense, given that our experiments presented people

with all three items at once. It seems plausible to think that a spreading activation process

would be started from all nodes and could “meet in the middle” to construct a shared

association style connection. In this sense, the contribution of the more direct Path 2 in

Experiment 4 also supports the earlier results in which the cosine measure did nearly as well

as the random-walk-based measure in that experiment. Apart from longer paths, this model

also allows us to evaluate the contribution of direct associates. This was absent in Experiment

1 by design and in all other experiments except Experiment 4, where it made a modest

contribution which isn’t surprising for triads like JEANS – DRESS – SKIRT or CATERPILLAR –

BUTTERFLY – FLEA.

Altogether, we find that a path-based measure performs at least as good or even better

as the similarity measure based on indirect paths and in both cases indirect links make a key

contribution to the final predictions.

General Discussion

The main empirical result of this work is that individuals share weak semantic

structure, agreeing with each other when making similarity judgments even when those items

are apparently unrelated. This supports the idea that the structure tying together remote

concepts is shared among individuals. We also demonstrated that it is difficult to reduce the

structure tying together this remote information to simple heuristics like frequency or

concreteness matching; it also does not correspond to unidimensional distinctions like

whether something is an artifact or animate. Based on an additive tree derived from people’s

similarity judgments as well as their explicit explanations, we found that people use multiple

sources of information when making these judgments, with thematic knowledge playing a
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key role (consistent with Estes et al., 2011; Lin & Murphy, 2001; Ross & Murphy, 1999;

Wisniewski & Bassok, 1999).

This pattern of findings was well-explained by a minimalistic spreading activation

account based on random walks through a semantic network derived from word-association

data. This account captured performance at different levels of the lexicon, from remote

associations to domain-level ones to category-level ones. At all of these levels, the spreading

activation mechanism allows us to infer information that is not present in the direct

connections between a node and its neighbors.

This work also contributes a method for studying the role of indirect paths in semantic

networks: examining directed small world walks. This framework includes the commonly

used local overlap measure based on shared associates as a special case which can be

compared with other types of short directed paths. Similarly, the framework generalizes a

commonly used random walk-based global similarity measure to indices of similarity that are

not based on “overlap” including paths with different directionality. Our results indicate that

accessing remote concepts does not necessarily depend on the activation of the entire

network (Ratcliff & McKoon, 1994). Rather, given the small world structure of the network,

they can often be accounted for by just a few directed paths with a length of 3 or less.

These results point towards a number of broader theoretical implications. Before

getting there, we need to consider other account of relatedness that could explain the

systematic preferences in remote triads.

Alternative semantic models and the subjective nature of relatedness

In the introduction we have stressed the notion of relatedness or similarity in the study

of concepts and word meaning. Similarity, however, is a property of the perceiver rather than

a concept in physical analysis: objects can only be similar or dissimilar to one another in

perception (and thought). As argued by Deese and others the notion of similarity is

tautological in nature, something is similar when it is similar (see p 12, Deese, 1965). If this
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is the case, we have to consider where the similarity stems from and render the relation

between association and relatedness or similarity more explicit.

In both the current semantic network and other lexico-semantic models derived from

text, the links in the network reflects the frequency of occurrence of successive ideas or

impressions and ideas in perception and thought. The contiguities that are revealed in the

successive instances of thought are those that have occurred frequently enough in the past to

have acquired some associative strength (Deese, 1965). According to this associationistic

view, relatedness or similarity reflects contiguity by mediation, which allows us to infer that

LION and TIGER are similar because they do not necessary co-occur directly but occur in

similar sentences. In other words, they become related in subjective experience. This mental

mediation process is similar to the inference in models like LSA (Landauer & Dumais, 1997),

and equally solves the induction problem due to the sparsity in the linguistic environment.

Whereas many lexico-semantic models like LSA stress that the mediated responses are

learned rather than dynamically derived using something like spreading activation, the

distinction between stored or dynamic representations might be less important than

suggested in previous work (Hare, Jones, Thomson, Kelly, & McRae, 2009; Ratcliff &

McKoon, 1994) as the mental co-activation of words that never occur together would become

stored in memory over time.

All this suggests that other semantic representations or models than the one presented

here might equally account for these findings. One possibility is that language models based

on information about how words co-occur in the environment should be able to do so too.

For such models to infer relationships that never co-occur in text, some kind of abstraction or

smoothing over semantic space is needed. The original LSA model (Landauer & Dumais,

1997), topic models (Griffiths, Steyvers, & Tenenbaum, 2007) and BEAGLE (Jones, Kintsch,

& Mewhort, 2006) all allow for such a mechanism. Because of the availability and abundance

of on-line text corpora, reducing sparsity is less of a concern (Recchia & Jones, 2009),

especially in the case of n-gram or co-occurrence models like the Hyperspace Analogue of
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Language model (Burgess, Livesay, & Lund, 1998).

To investigate whether such text-based models could equally account for the

preferences in the remote triad task, we ran a pilot study using a Dutch newspaper and

on-line text corpus from which syntactic dependency relations were derived (see De Deyne

et al., 2015). Although a full treatment of these findings would lead us too far, it is worth

mentioning the basic results for comparing the triad judgments across all four experiments.

The correlations between the models and people’s performance were very similar in all

experiments and range from r = .30 to r = .56. These values are considerably lower

compared to those derived from our network model (shown in Figure 6). This result is in line

with work suggesting that text-based models provide a very indirect way to access subjective

meaning compared to word associations and might be less suited to explain certain human

similarity processes because they are based on discourse where communication is the

ultimate goal (De Deyne et al., 2015; Mollin, 2009; Szalay & Deese, 1978).

What about linguistically-inspired networks such as WordNet? They might account for

people’s shared weak similarity judgments, since they represent a fully connected hierarchical

network with a large variety of words. Moreover, they allow an interesting test case as the

relations are primarily defined by category-based similarity. To investigate to what degree

this kind of hierarchical semantic representation can capture our findings we derived

relatedness measures from Cornetto (Vossen et al., 2013), which expands previous versions

of the Dutch version of WordNet. This semantic network consists of 92,000 lemmas for which

118,000 word meanings are encoded. Using the best performing path-based similarity

measure, we found no significant correlation between network predictions and people’s

performance in Experiment 1 and weak correlations in Experiment 2 and 3 (r = .17, p < .01

and r = .14, p < .01). The results were better at the level of basic level categories

(Experiment 4, r = .26, p < .01), but still not close to the findings based on the cosine or

spreading activation indices derived from the word association network. This suggests that a

very extensive linguistic expert system like WordNet does not capture the mental properties
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underlying the relationships between remote concepts.

Perhaps the importance of other kinds of information is not accounted for in a way that

corresponds with how humans mentally represent concepts. In other words, WordNet might

represent the right (taxonomic) kind of edges in the network, but fail to distinguish the

important links from the less important ones. In addition, it could be the fact that a crucial

type of (thematic) information is missing.

Further evidence against a primarily taxonomic category structure comes from a study

De Deyne, Verheyen, Navarro, Perfors, and Storms (2015) on the organization of the same

semantic network by deriving clusters at different scales (broad large and small detailed

clusters). None of the clusters at any level of abstractness were primarily taxonomic. Perhaps

this is not such a surprising result given the distributional properties of language where a

word can only be related to a small number of other words but can systematically co-occur

with a much larger set of words. As a consequence, the fundamental relation in

lexico-semantic models is of a thematic nature, defined in a broad sense as two entities that

co-occur in a temporal or spatial context.

While this suggested a different organization compared to similarity-based taxonomic

models like WordNet, one might object that this simply reflects the procedure of collecting

word associations. However, this study demonstrated that restricting the range of concepts to

concrete nouns like the one studied in Experiment 4 was able to recover a taxonomy grouping

well-known categories like BIRDS or TOOLS. This suggests that similarity-based taxonomies

arise from a selection bias for concrete nouns belonging to a relative small set of categories.

Finally, one might argue that this reflects the specific triadic comparisons used in this

study as well. However, the pattern of results observed here for both WordNet and text

corpus based models has also been observed on related tasks such as pairwise human

similarity ratings; these models only accounted for a portion of the variance captured by

network models derived from word associations (De Deyne et al., 2009, 2015).
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Factors affecting model performance

We identified four factors that determine the prediction performance of our semantic

network model. A first one is the type of comparison: the best performance was found for the

more closely related triads (in which the items all came from the same category), although

performance was still high for the more remote ones. A second factor is the density of the

graph: as earlier work demonstrated, denser graphs led to better predictions (De Deyne et al.,

2013). The role of information spreading or indirect links was also proportionally larger in

very sparse graphs (G1), which might indicate potential ceiling effects in very dense graphs.

This was supported by the finding for the categoric triads and the denser graph G123, which

were nearly identical for the local overlap and spreading activation measures. A third factor

is the decay parameter α, which confirmed that tasks with more remote triads benefit from

longer indirect paths. Closely related to the decay factor we also confirmed that length of the

path itself played a similar role. This was both apparent in small world walks over undirected

paths up to a length of four, and a more general approach that also includes directed paths up

to a length of three. While both analyses derive similarity in a slightly different way, they both

showed a contribution of longer paths, especially in those experiments with remote triads.

Implications for theories about semantic representations

One of the main implications of our work is that information about remote concepts is

represented in a stable way. This is interesting in light of the logical problem of similarity

construction discussed in the introduction. One possibility is that the nature of the structure

underlying remote concepts is constrained by limitations in how humans perceive the world

and process input. These constraints might exert a strong top-down influence in detecting

structure, even if such structure is absent in the environment. While such constraints must

certainly exist to some extent, it is unclear whether they are sufficient to explain how or why

people have such similar judgments about very weakly-related concepts.

Another possibility is that the way the environment (linguistic or otherwise) is
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structured represents a form of learning that contributes strongly to the structure of our

mental representations. For instance, consider the emphasis our participants placed on

thematic knowledge. This sort of knowledge is acquired naturally from language (Estes et al.,

2011) as well as contingencies in the environment. Thematic information plays such a strong

role that it has even been found to override taxonomic judgments (Lin & Murphy, 2001;

Wisniewski & Bassok, 1999). People’s ability to detect and use weak correlations in language

and the environment is also apparent in the existence of spurious correlations in synaesthesia

as well as the phenomenon of pareidolia where the mind perceives patterns where none

actually exist in the patterns of clouds, rocks or even coffee foam (e.g., Liu et al., 2014).

Schizophrenia is another case where people may impose structure on weakly-related

items. In that case, disturbed language production has been characterized as the loosening of

associations, the intrusion of mediated responses and the presence of hyper-priming due to a

presumed lack of ability to inhibit weak links (Pomarol-Clotet, Oh, Laws, & McKenna, 2008).

In this case, the seemingly bizarre pathological responses produced in a word association task

may have a sensible explanation based on relationships between distant items in a semantic

network (Gordon, Silverstein, & Harrow, 1982). Altogether, these phenomena suggest that at

least to some extent, people impose or infer some structure when organizing their semantic

knowledge, and they do so in similar ways to each other. The most interesting questions for

cognitive scientists are what imposes those constraints, how that structure is organized, and

how that affects the way in which we process information.

Our experiments suggest some answers to these questions. In Experiment 2, we found

that no single factor (like a domain or a feature) accounted for people’s similarity judgments,

even though that information was available. The introspective judgments in Experiment 3

indicated that most participants related pairs through a thematic link; this aligns with

previous results that showed that the dominant type of information represented in semantic

networks from word associations is thematic (De Deyne & Storms, 2008a). If this is indeed

the case, then the notion of what constitutes a natural category (e.g., as proposed by Rosch,
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1973, as an organizing factor of the mental lexicon) based on entity features needs to be

expanded. Our findings contribute to a larger body of research suggesting that even the

taxonomic structure in the animal domain needs to be questioned because such a taxonomic

organization of knowledge might be heavily culturally defined (Lopez, Atran, Coley, Medin,

& Smith, 1997) or a consequence of formal education (Sharp et al., 1979).

Similarly, due to the free nature of the association task (in contrast to the property

generation task), the semantic network cannot be described as encoding a single type of

information as it captures both thematic and featural relations under the form of temporal

contiguities (JUNGLE – TIGER,TIGER – STRIPES) and similarity relations (LION – TIGER).

A final contribution of this research is that it can account for asymmetry effects in

various tasks including similarity judgments (e.g., Tversky, 1977). Representing the mental

lexicon as a directed graph explicitly incorporates the idea of asymmetry. Indeed, our

modelling work indicates that the direction of the links and paths connecting any pair of

words influences the retrieval of information significantly. This suggests that while previous

work has often transformed representations to undirected networks for reasons of simplicity

(e.g., Steyvers et al., 2004), the availability of sophisticated graph-theoretic measures for

directed networks is a viable alternative and may be more appropriate in some cases.

Our explicit account for how information spreads over short directed paths also has

implications for priming research. First, asymmetry effects for associative priming has been

used to distinguish it from pure semantic priming (Thompson-Schill, Kurtz, & Gabrieli,

1998). Our results indicate that these distinctions can be refined further by not only

considering directly associated prime and target pairs, but by also looking at indirect directed

paths that could give rise to asymmetry as well. Second, the small world walks also provide a

well defined framework to study mediated priming, which has been of theoretical

significance for the study of activation spreading (Hutchison, 2003). In this priming task

facilitation for a target word such as LION is observed after primes like STRIPES even though

both words are not directly related. Instead activation spreads through an intermediate node,
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in this case TIGER. This example corresponds to one of the potential paths connecting prime

and target, whereas potential other directed paths (see Figure 9) or a combination of them

might be able to provide a more systematic framework to test semantic processing in priming.

Open questions and future directions

The stability of weak semantic structure, ways of assessing this empirically, and initial

steps to predict this behavior are in many ways just the beginning of a new chapter which has

the potential to bring together different research areas. Specifically, it highlights specific

predictions that can only be answered partially based on the current data.

A first question is how a computational model might account for the decision latencies

in the remote triad task. Starting with the Collins and Loftus (1975) network models, one

expects spreading activation on longer paths leading to slower RTs. Although an RT analysis

was not the main purpose of this study, we did find that those triads participants responded

to faster had paths that were somewhat shorter than harder triads with long reaction times

(especially in Experiment 4). Similarly, for triads in which people responded quickly, the

model performs well, with correlations between 0.68 and 0.87. It performs somewhat less

well on the slower trials (which presumably correspond to the more difficult decisions),

although even there the correlations are still respectable, ranging between 0.53 and 0.66. Of

course modeling reaction times in triadic decision tasks presents additional challenges as

well, like response competition and so on, whereas our models of spreading activation and

the integration of information in the remote triad task were chosen with transparency and

interpretability in mind and were therefore fairly simple.

While the interpretation of the present results on RTs is highly speculative, they do

indicate this might be an interesting avenue for future research. One way would be by

incorporating more information about the timing aspects of the decision process. Recent

mathematical models for reaction times might allow us to get a better understanding of how

the choices are made based on the accumulation of evidence for each pair in the triad. These
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models include drift-diffusion (Ratcliff, 1978) or linear ballistic models (Brown & Heathcote,

2008). Another approach would involve unraveling the information processing constraints in

terms of parallel, serial or co-activated processing (Townsend & Nozawa, 1995).

If the mental lexicon is not structured primarily as a similarity-based hierarchical

taxonomy but reflects a more thematic-based organization, one might also question what type

of similarity process determines how we retrieve this primarily thematic information from the

mental lexicon. For highly similar entities such as LIONS and TIGERS similarity might depend

on the alignability of the intrinsic features shared by visual similar entities (Markman &

Gentner, 1993). This contrasts with another possibility that does not rely on intrinsic feature

overlap but relies on a process of thematic integration when no intrinsic features match (Lin

& Murphy, 2001; Wiemer-Hastings & Xu, 2003; Wisniewski & Bassok, 1999). On the basis of

previous research two distinct predictions can be made. On the one hand, similarity between

verb concepts or abstract concepts primarily depends on a process of thematic integration

(Wiemer-Hastings & Xu, 2003) which suggests that all things being equal, different types of

comparison processes might determine triadic preferences depending on the type of word.

Second, in the case of concrete concepts, one might suspect the alignment of common

features to be situated at the basic level as this level encodes similar shape and function

(Rosch, Mervis, Grey, Johnson, & Boyes-Braem, 1976) whereas integration might be more

natural when such aligneable features are not present. While this prediction is largely

supported by the current results through the contribution of different types of paths

depending on the range of concepts (weakly related nouns in Experiment 1 versus nouns

from a common category in Experiment 4), it remains to be seen if the same hold for other

concepts than concrete nouns that might be varied in terms of their taxonomic relation.

A final prediction that follows from the associationist account where weak linguistic

contingencies are encoded is that the weak similarity structure might change in a continuous

fashion from childhood to late language development. If language exposure automatically

leads to the activation of mediated representations, additional exposure should change the
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way we structure the mental lexicon. This type of representational change has been

documented in the case of the syntagmatic-to-paradigmatic shift in children (Ervin, 1961)

and an ongoing large-scale cross-sectional study in our lab suggests this qualitative shift

unfolds continuously throughout adulthood. The semantic network provides a static snapshot

of this process as it contains an increasing amount of higher-order associations with time

whereas the spreading activation mechanism illustrates how these higher-order links might

be gradually learned as a function of language exposure.

Overall, although much work remains to be done, this research suggests that expanding

the area of study by including weak similarities can be a significant step forward to

differentiate different theoretical proposals and more generally understanding both the

nature of people’s semantic networks and how information is accessed within them.
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Footnotes

1 Calculating the exact number is slightly complicated because the extent of this bias de-

pends on the sample size. If there were only a total of 10 observations, the expected value of

the modal proportion is 0.49. When the sample size rises to 100 the expected value drops to

0.38, and by the time N=1,000 it falls to 0.35. Our hypothesis tests take this into account.

Our tests explicitly calculate the sampling distribution for the modal frequency, and do not

literally test the modal frequencies against a value of 0.33. The R functions that we used to

compute these probabilities and the rest of the statistical testing machinery are included in the

additional materials.

2 Note that these tests tend to be more conservative than frequentist versions based on

permutation tests for the mode and χ2 for the overall goodness of fit reported for a pilot of

these data in De Deyne, Navarro, Perfors, and Storms (2012). However, across all experiments

reported here, the same qualitative results were obtained.

3 We also considered a multidimensional scaling approach, but this produced far less satis-

factory results.

4 As did Lee (1999), we varied the precision between values of 0.1, 0.2 and 0.3 to estimate

the BIC and decide on the number of internal nodes; the specific value of precision did not

impact the main results.

5 Equation 3 converges only for values of α < 1
σmax P where σmaxP is the largest singular

value. Given the fact that P is a transition matrix for the largest connected component of G,

σmax(P) always equals 1. For this reason only values of α larger than 0 and smaller than 1 will

be considered.

6 This highlights the strong similarities to the PageRank measure: X = (I − αP−1)1. In

other words, the PageRank measure reflects the centrality of a node as the weighted sum of all
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indirect paths it has (Page, Brin, Motwani, & Winograd, 1998).

7 Note that the results are quite similar despite the lack of an additional weighting step. This

suggests that the additional weighting step is only needed for unbounded walks in Equation 3.

8 The local overlap measure is not entirely identical due to the inclusion of a diagonal term

in the first line of Equation 2. The results were very comparable with the largest difference

found for Experiment 4, where r = .65 for the limited walk versus r = .68 for the unbounded

walk.
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Appendix A

Remote triad stimuli used in Experiment 1

The triads are ordered from weak preferences to strong preferences, with the modal response

indicated by boldface words. In the case of ties, the second pair is underlined.

Stimulus English Translation

haat – ochtend – toets hate – morning – test

bandiet – bes – fanfare bandit – berry – fanfare

gorilla – riet – rover gorilla – reed – robber

beer – engel – hoed bear – angel – hat

duister – hitte – schot darkness – heat – shot

kanarie – pion – vuilnis canary – pawn – garbage

banaan – fee – onweer banana – fairy – storm

bluts – buidel – veter bump – pouch – shoestring

bokaal – korrel – magneet jar – kernel – magnet

pret – taart – zang fun – pie – singing

speld – tegel – troon pin – tile – throne

eind – risico – vaart end – risk – canal

duikboot – poef – vlaai submarine – pouf – flan

alarm – kreng – orgel alarm – carrion – organ

anker – kramp – slip anchor – cramp – briefs

bijbel – leeuw – vlot Bible – lion – raft

donder – spuug – ton thunder – spittle – ton

doos – schat – sleutel box – treasure – key

atleet – knuppel – koord athlete – bat – cord

barbecue – cassette – mest barbecue – cassette – manure

dienaar – kier – meel servant – crack – plain flour

dam – rups – tang dam – caterpillar – pliers

koor – sap – spade choir – juice – spade

Continued on next page
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Stimulus English Translation

haan – rok – sneeuw rooster – skirt – snow

kroon – reus – toeter crown – giant – horn

kabel – kruid – prop cable – weed – gag

idioot – vitamine – zondag idiot – vitamin – Sunday

pastoor – vleugel – voetbal pastor – wing – soccer ball

actie – klant – slag action – customer – stroke

beroep – gevaar – rust profession – danger – half time

afdak – beschuit – elastiek overhang – rusk – elastic

paling – stengel – tunnel eel – stem – tunnel

bom – gips – haard bomb – plaster cast – fireplace

beker – hagel – juf cup – hail – teacher

korst – schrift – vlinder crust – writing – butterfly

akker – deeg – knuffel field – dough – stuffed animal

horloge – koningin – vierkant watch – queen – square

gewicht – lawaai – oefening weight – noise – exercise

koffer – mes – plein suitcase – knife – square

kwartier – proef – voertuig quarter – test – vehicle

hyena – radijs – salto hyena – radish – somersault

biscuit – bokser – poedel biscuit – boxer – poodle

kreeft – postbode – splinter lobster – mail carrier – splinter

gids – kalk – pupil guide – chalk – pupil

fles – hok – vent bottle – hutch – guy

klem – storm – vrucht clamp – storm – fruit

borstel – poep – worm brush – buttocks – worm

hengel – mais – tros fishing rod – corn – bunch

diefstal – som – vouw theft – sum – fold

boel – gebed – gek lot – prayer – crazy

Continued on next page
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Stimulus English Translation

hal – ramp – ruiter hall – disaster – rider

rijm – tocht – vrede rhyme – tour – peace

agent – mouw – prins cop – sleeve – prince

arend – plons – robot eagle – splash – robot

hooi – kraal – sultan hay – bead – sultan

paprika – rubber – zwaluw bell pepper – rubber – swallow

eekhoorn – spar – valk squirrel – fir – falcon

boete – dooi – hostie penalty – thaw – wafer

oma – suiker – wortel grandmother – sugar – root

adem – gezin – hotel breath – family – hotel

bretel – dweil – lasso suspender – floorcloth – lasso

cement – oprit – riool cement – driveway – sewer

abdij – inbraak – prul abbey – burglary – bauble

driehoek – lade – tijger triangle – drawer – tiger

meeuw – mos – trompet gull – moss – trumpet

doorn – parel – pleister thorn – pearl – bandage

balkon – blok – klauw balcony – block – claw

heks – kraan – vet witch – crane – fat

taak – verte – zonde task – distance – sin

haag – navel – pauw hedge – belly button – peacock

abrikoos – bever – ekster apricot – beaver – magpie

panter – spaak – tube panther – spoke – tube

bijl – twijg – wijf ax – twig – woman

boerin – duin – gebit peasant woman – dune – teeth

kilo – melodie – stank kilo – melody – stench

cake – pijp – snee cake – pipe – slice

kolom – ober – zuur column – waiter – acid

Continued on next page
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Stimulus English Translation

duivel – meid – pater devil – maid – father

douche – luier – tekening shower – diaper – drawing

lezer – priester – wijk reader – priest – district

kameel – luipaard – specht camel – leopard – woodpecker

camping – eik – zweep camping – oak tree – whip

boter – trein – zadel butter – train – saddle

berg – eiland – kring mountain – island – circle

libel – raaf – spons dragonfly – raven – sponge

diarree – jurk – soep diarrhea – dress – soup

boon – pijl – snoep bean – arrow – candy

bioscoop – camera – damp cinema – camera – vapor

draad – pet – tomaat thread – cap – tomato

datum – gif – lek date – poison – leak

leerling – maat – nest student – measure – nest

gieter – inktvis – theepot watering can – squid – teapot

herrie – stoet – zwam racket – parade – fungus

bestek – dessert – tractor cutlery – dessert – tractor

goudvis – handtas – parkiet goldfish – handbag – parakeet

havik – pelikaan – vloed hawk – pelican – flood

krokodil – papegaai – vlek crocodile – parrot – stain

merel – pony – servet blackbird – pony – napkin

beha – ijskast – sport bra – refrigerator – sport

asiel – braam – gelei asylum – blackberry – jelly
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Appendix B

Stimuli Experiment 2

Stimulus English Translation Valence Imageability

adem breath 4.78 5.63

akker field 4.29 6.13

asiel asylum 2.83 5.40

atleet athlete 5.03 6.23

berg mountain 4.45 6.72

bom bomb 2.08 6.47

boter butter 4.09 6.40

donder thunder 3.11 4.98

kameel camel 4.39 6.07

koord cord 4.03 6.00

korrel grain 4.00 5.27

korst crust 3.58 5.80

kraan crane 4.11 6.63

kring circle 4.48 5.90

melodie melody 5.39 4.20

orgel organ 4.23 5.52

paling eel 3.70 5.71

poedel poodle 3.92 6.30

priester priest 3.52 5.85

sleutel key 4.44 6.43

taak task 3.77 3.43

tijger tiger 4.48 6.20

vuilnis garbage 2.64 6.53

worm worm 3.17 5.87

zwaluw swallow 4.55 6.00
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Appendix C

Stimuli Experiment 3

Table C1

Artifact Domain Triads in Experiment 3.

Stimulus English Translation Category

bloes–handdoek–zeppelin blouse–towel–Zeppelin clothing–kitchen utens.–vehicles

beha–frigo–viool bra–fridge–violin clothing–kitchen utens.–music instr.

jas–microgolf–saxofoon coat–microwave oven–saxophone clothing–kitchen utens.–music instr.

jogging–triangel–zwaard tracksuit–triangle–sword clothing–music instr.–weapons

kleed–ploeg–zeef dress–plough–sieve clothing–tools–kitchen utens.

sweater–vijl–weegschaal sweater–file–scales clothing–tools–kitchen utens.

hemd–raket–tank shirt–rocket–tank clothing–vehicles–weapons

broek–speer–wok pants–spear–wok clothing–weapons–kitchen utens.

fles–jeans–tractor bottle–jeans–tractor kitchen utens.–clothing–vehicles

mixer–pyjama–vliegtuig mixer–pyjamas–airplane kitchen utens.–clothing–vehicles

fornuis–hoed–moto stove–hat–motorbike kitchen utens.–clothing–vehicles

pan–tamboerijn–tram pan–tambourine–tram kitchen utens.–music instr.–vehicles

koffiezet–waterpas–zweep percolator–level–whip kitchen utens.–tools–weapons

blikopener–bus–harp can opener–bus–harp kitchen utens.–vehicles–music instr.

klopper–touw–trein whisk–rope–train kitchen utens.–weapons–vehicles

klarinet–topje–zaag clarinet–top–saw music instr.–clothing–tools

piano–riem–slede piano–belt–sled music instr.–clothing–vehicles

panfluit–rasp–stok pan flute–grater–stick music instr.–kitchen utens.–weapons

gitaar–lepel–zwempak guitar–spoon–bathing suit music instr.–kitchen utens.–clothing

doedelzak–schop–theelepel bagpipe–shovel–teaspoon music instr.–tools–kitchen utens.

drumstel–koets–vork drum set–carriage–fork music instr.–vehicles–kitchen utens.

banjo–dolk–kom banjo–dagger–bowl music instr.–weapons–kitchen utens.

Continued on next page
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Stimulus English Translation Category

accordeon–katapult–rok accordion–slingshot–skirt music instr.–weapons–clothing

fluit–schild–stofzuiger flute–shield–vacuum cleaner music instr.–weapons–tools

kruiwagen–step–trommel wheelbarrow–kick scooter–drum tools–vehicles–music instr.

hamer–helikopter–muts hammer–helicopter–beanie tools–vehicles–clothing

beitel–knuppel–sjaal chisel–club–scarf tools–weapons–clothing

bromfiets–slip–trompet scooter–panties–trumpet vehicles–clothing–music instr.

duikboot–pet–pot submarine–cap–pot vehicles–clothing–kitchen utens.

auto–oven–tang car–oven–tongs vehicles–kitchen utens.–tools

fiets–mes–orgel bicycle–knife–organ vehicles–tools–music instr.

jeep–kanon–trui jeep–canon–pullover vehicles–weapons–clothing

boot–granaat–schort boat–grenade–apron vehicles–weapons–kitchen utens.

kar–pistool–schaar cart–pistol–scissors vehicles–weapons–kitchen utens.

geweer–ketel–kostuum rifle–kettle–suit weapons–kitchen utens.–clothing

bijl–spijker–taxi ax–nail–taxi weapons–tools–vehicles

boog–caravan–cello bow–trailer –cello weapons–vehicles–music instr.
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Table C2

Animal Domain Triads in Experiment 3

Stimulus English Translation Category

duif–sardine–vlinder dove–sardine–butterfly birds–fish–insects

kalkoen–mot–varken turkey–moth–pig birds–insects–mammals

arend–luis–pladijs eagle–louse–plaice birds–insects–fish

haan–hond–vlo rooster–dog–flea birds–mammals–insects

gier–tijger–wesp vulture–tiger–wasp birds–mammals–insects

eend–kikker–paling duck–frog–eel birds–reptiles–fish

karper–pelikaan–spin carp–pelican–spider fish–birds–insects

kabeljauw–pinguïn–vleermuis cod–penguin–bat fish–birds–mammals

haai–kakkerlak–olifant shark–cockroach–elephant fish–insects–mammals

dolfijn–pissebed–salamander dolphin–wood louse–salamander fish–insects–reptiles

inktvis–krekel–zwaan squid–cricket–swan fish–insects–birds

goudvis–libel–paard goldfish–dragonfly–horse fish–insects–mammals

ansjovis–konijn–pad anchovy–rabbit–toad fish–mammals–reptiles

kever–kip–leguaan beetle–chicken–iguana insects–birds–reptiles

hert–pauw–zalm deer–peacock–salmon mammals–birds–fish

bever–ooievaar–zwaardvis beaver–stork–swordfish mammals–birds–fish

hamster–papegaai–schildpad hamster–parrot–tortoise mammals–birds–reptiles

eekhoorn–haring–worm squirrel–herring–worm mammals–fish–insects

koe–rog–rups cow–ray–caterpillar mammals–fish–insects

aap–forel–mus monkey–trout–sparrow mammals–fish–birds

egel–potvis–slang hedgehog–sperm whale–snake mammals–fish–reptiles

kat–mug–valk cat–mosquito–falcon mammals–insects–birds

giraf–kameleon–mier giraffe–chameleon–ant mammals–reptiles–insects

alligator–kanarie–walvis alligator–canary–whale reptiles–birds–fish

Continued on next page



WEAK SIMILARITY IN SEMANTIC NETWORKS 66

Stimulus English Translation Category

boa–snoek–vlieg boa–pike–fly reptiles–fish–insects

hagedis–hommel–merel lizard–bumblebee–blackbird reptiles–insects–birds

krokodil–nijlpaard–sprinkhaan crocodile–hippopotamus–grasshopper reptiles–mammals–insects

dinosaurus–kangoeroe–meeuw dinosaur–kangaroo–seagull reptiles–mammals–birds



WEAK SIMILARITY IN SEMANTIC NETWORKS 67

Table C3

Non-domain triads stimuli selected from Experiment 3

Stimulus English Translation

adem–gezin–hotel breath–family–hotel

afdak–beschuit–elastiek overhang–rusk–elastic

agent–mouw–prins cop–sleeve–prince

akker–deeg–knuffel field–dough–stuffed animal

balkon–blok–klauw balcony–block–claw

banaan–fee–onweer banana–fairy–storm

beker–hagel–juf cup–hail–teacher

bioscoop–camera–damp cinema–camera–vapor

bluts–buidel–veter bump–pouch–shoestring

boel–gebed–gek lot–prayer–crazy

boerin–duin–gebit peasant woman–dune–teeth

boete–dooi–hostie penalty–thaw–wafer

bokaal–korrel–magneet jar–kernel–magnet

cement–oprit–riool cement–driveway–sewer

datum–gif–lek date–poison–leak

diarree–jurk–soep diarrhea–dress–soup

diefstal–som–vouw theft–sum–fold

doorn–parel–pleister thorn–pearl–bandage

doos–schat–sleutel box–treasure–key

douche–luier–tekening shower–diaper–drawing

eind–risico–vaart end–risk–canal

gids–kalk–pupil guide–chalk–pupil

gorilla–riet–rover gorilla–reed–robber

haat–ochtend–toets hate–morning–test

Continued on next page
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Stimulus English Translation

heks–kraan–vet witch–crane–fat

herrie–stoet–zwam racket–parade–fungus

horloge–koningin–vierkant watch–queen–square

hyena–radijs–salto hyena–radish–somersault

idioot–vitamine–zondag idiot–vitamin–Sunday

kabel–kruid–prop cable–weed–gag

kolom–ober–zuur column–waiter–acid

koor–sap–spade choir–juice–spade

leerling–maat–nest student–measure–nest

lezer–priester–wijk reader–priest–district

panter–spaak–tube panther–spoke–tube
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Appendix D

Simplified semantic Ontology used in Experiment 3

The ontology was based on De Deyne and Storms (2008a) and Wu and Barsalou (2009). For the

purpose of coding the triad explanations only the major distinctions of the ontology below were

coded. For each of the five classes we indicate the short label and original label (between brackets),

definition (in italic font), common subtypes and examples.

Features (Entity features). Properties of a concrete entity, either animate or inanimate. Besides being a

single, self-contained object, an entity can be a coherent collection of objects (e.g., forest). This includes

features referring to a component, surface properties, behavior, material, and systemic properties

referring to states, conditions and abilities.

Examples: CAR <has an engine>, CHERRY <is red>, DOLPHIN <is intelligent>, CLOCK <ticks>

Thematic (Situation features). Properties of a situation, where a situation typically includes one or more

agents, at some place and time, engaging in an event, with one or more entities in various semantic roles.

Examples: BOOK <library>, SHIRT <wear>, PICNIC <family>, BEER <hangover>

Taxonomic. Categories in the taxonomy to which a concept belongs. This includes superordinates,

coordinates, subordinates, individuals, synonyms and antonyms.

Examples: HAMMER <tool>, VEIL <hat>, DOLL <Barbie>, BLACK <white>

Valence (Introspective features). Properties of a subject’s mental state as he or she views a situation, or

properties of a character’s mental state in a situation. This includes affect / emotion features and

evaluations.

Examples: WASP <annoying>, HOMEWORK <stupid>, GOWN <fancy>

Lexical. Properties at the word level by virtue of orthographic similarity and completions, mediated

responses through implicit common features or similar concepts, words used in common expressions, and

meta-comments pertaining to the task and the stimulus (e.g., indications of word class). Note: in the case

of triad interpretations this also included meta-comments about language occurrence.

Examples: JELLY <fish>, WINE <whine>, PAPAYA <rare word>
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Appendix E

Category triad stimuli in Experiment 4

Category label, Dutch triad stimuli and English translations

Birds: arend–merel–specht eagle–blackbird–woodpecker, duif–eend–pinguin dove–

duck–penguin ekster–fazant–pauw magpie–pheasant–peacock, gier–haan–kip vulture–

rooster–chicken, kalkoen–kraai–reiger turkey–crow–heron, kanarie–mees–meeuw

canary–chickadee–seagull, koekoek–mus–ooievaar cuckoo–sparrow–stork, papegaai–

pelikaan–zwaluw parrot–pelican–swallow

Clothing: bloes–jogging–zwempak blouse–tracksuit–bathing suit, beha–broek–muts

bra–pants–beanie hoed–kostuum–slip hat–suit–panties, hemd–riem–topje shirt–belt–top,

jeans–kleed–rok jeans–dress–skirt, jas–sjaal–sweater coat–scarf–sweater, beha–broek–

muts bra–pants–beanie, pet–pyjama–trui cap–pyjamas–pullover

Fish: ansjovis–pladijs–rog anchovy–plaice–ray, dolfijn–haring–kabeljauw dolphin–

herring–cod, forel–paling–walvis trout–eel–whale, goudvis–potvis–snoek goldfish–

sperm whale–pike, haai–zalm–zwaardvis shark–salmon–swordfish, inktvis–karper–

sardine squid–carp–sardine

Fruit: aardbei–citroen–kers strawberry–lemon–cherry, abrikoos–bosbes–framboos

apricot–blueberry–raspberry, ananas–mango–pompelmoes pineapple–mango–grapefruit,

appel–druif–pompoen apple–grape–pumpkin, banaan–limoen–perzik banana–lime–

peach, kiwi–kokosnoot–vijg kiwi–coconut–fig, meloen–peer–pruim melon–pear–plum

Insects: kakkerlak–libel–pissebed cockroach–dragonfly–wood louse, hommel–mot–

sprinkhaan bumblebee–moth–grasshopper,krekel–mier–worm cricket–ant–worm, kever–

luis–mug beetle–louse–mosquito, spin–vlieg–wesp spider–fly–wasp, rups–vlinder–vlo

caterpillar–butterfly–flea

Continued on next page
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Category label, Dutch triad stimuli and English translations

Kitchen Utensils: fles–ketel–schort bottle–kettle–apron, blikopener–fornuis–rasp

can opener–stove–grater, handdoek–theelepel–wok towel–teaspoon–wok, frigo–oven–

weegschaal fridge–oven–scales, koffiezet–lepel–mixer percolator–spoon–mixer, klopper–

pot–zeef whisk–pot–sieve, microgolf–schaar–vork microwave oven–scissors–fork, kom–

mes–pan bowl–knife–pan

Mammals: bever–kangoeroe–varken beaver–kangaroo–pig, aap–koe–wolf monkey–

cow–wolf, eekhoorn–giraf–tijger squirrel–giraffe–tiger, bizon–lama–nijlpaard bison–

llama–hippopotamus, ezel–paard–zebra donkey–horse–zebra, egel–ijsbeer–kat

hedgehog–polar bear–cat, hert–hond–leeuw deer–dog–lion, hamster–konijn–vleermuis

hamster–rabbit–bat, aap–koe–wolf monkey–cow–wolf, neushoorn–olifant–schaap

rhinoceros–elephant–sheep

Musical Instruments: accordeon–piano–trommel accordion–piano–drum, banjo–

gitaar–panfluit banjo–guitar–pan flute, cello–drumstel–tamboerijn cello–drum set–

tambourine, doedelzak–orgel–viool bagpipe–organ–violin, fluit–klarinet–trompet flute–

clarinet–trumpet, harp–saxofoon–triangel harp–saxophone–triangle

Professions: acteur–apotheker–archeoloog actor–pharmacist–archaeologist, advocaat–

loodgieter–tandarts lawyer–plumber–dentist, architect–boekhouder–rechter architect–

accountant–judge, bakker–dokter–piloot baker–doctor–pilot, dierenarts–directeur–

kok veterinarian–manager–cook, kinesist–stewardess–vuilnisman physiotherapist–

stewardess–garbage collector, leraar–minister–postbode teacher–minister–postman,

opvoedster–psycholoog–slager educator–psychologist–butcher

Reptiles: alligator–salamander–schildpad alligator–salamander – tortoise, boa–pad–

slang boa–toad–snake, dinosaurus–hagedis–kikker dinosaur–lizard–frog, kameleon–

krokodil–leguaan chameleon–crocodile–iguana

Continued on next page
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Category label, Dutch triad stimuli and English translations

Sports: badminton–basketbal–wielrennen badminton–basketball–cycling, ballet–

voetbal–zeilen ballet–soccer–sailing, baseball–volleybal–zwemmen baseball–volleyball–

swimming, biljarten–judo–rugby billiards–judo–rugby, boksen–handbal–tennis boxing–

handball–tennis, golf–schermen–wandelen golfing–fencing–walking, hardlopen–

ijshockey–turnen running–ice hockey–gymnastics, schaken–squash–surfen chess–

squash–surfing

Tools: beitel–schop–zaag chisel–shovel–saw, hamer–spijker–stofzuiger hammer–nail–

vacuum cleaner,kruiwagen–ploeg–vijl wheelbarrow–plough–file, tang–touw–waterpas

tongs–rope–level

Vegetables: aardappel–prei–selder potato–leek–celery, ajuin–bloemkool–peterselie

onions–cauliflower–parsley,aubergine–biet–radijs eggplant–beet–radish, courgette–

komkommer–paprika zucchini–cucumber–pepper, look–spinazie–tomaat garlic–spinach–

tomato, waterkers–witloof–wortel water cress–endive–carrot

Vehicles: auto–bromfiets–zeppelin car–scooter–Zeppelin, boot–bus–moto boat–bus–

motorbike, caravan–tram–trein trailer –tram–train, duikboot–taxi–tractor submarine–

taxi–tractor, fiets–jeep–kar bicycle–jeep–cart, helikopter–slede–step helicopter–sled–kick

scooter, koets–raket–vliegtuig carriage–rocket–airplane

Weapons: boog–knuppel–tank bow–club–tank, geweer–katapult–zweep rifle–slingshot–

whip, granaat–stok–zwaard grenade–stick–sword, kanon–pistool–speer canon–pistol–

spear, bijl–dolk–schild ax–dagger–shield


