
The Chinese restaurant process

COMPSCI 3016: Computational Cognitive Science
Dan Navarro & Amy Perfors

University of Adelaide

Abstract

The Chinese restaurant process (CRP) is an extremely simple and powerful
tool. Unfortunately, it’s also one of the most poorly described concepts in
the statistical literature. This note tries to demystify the CRP. If anything
the notes doesn’t make sense please contact me (these notes were written by
Dan: daniel.navarro@adelaide.edu.au) and I’ll try to fix them!

What is the Chinese restaurant process?

Reduced to the simplest possible description, the Chinese restaurant process (CRP)
gives us a distribution over partitions. Suppose that we have a collection of observations, and
we want to cluster/partition them into groups. We can do this using the CRP. The CRP gets
its name from a metaphor based on Chinese restaurants in San Francisco that seem to have
limitless seating capacity. In this metaphor, every possible group corresponds to a “table”
in an infinitely large Chinese restaurant. Each observation corresponds to a “customer”
entering the restaurant and sitting at a table. In this metaphor, the customers are assumed
to prefer sitting at popular tables, but nevertheless there is always a non-zero probability
that a new customer will sit at a currently unoccupied table. To see how this works, suppose
that there are currently N customers sitting in the restaurant, and let zi be an indicator
variable that tells us which table the ith customer is sitting at. Thus we have a vector of
“table assignments”, z = (z1, z2, . . . , zN ). For instance if the table assignments for N = 6
customers were given by z = (1, 1, 2, 1, 3, 4), then there would be three customers sitting at
table 1 (i.e., customers number 1, 2 and 4), and one customer at table 2 (i.e., customer 3),
table 3 (i.e., customer 5) and table 4 (i.e., customer 6). The actual table numbers don’t
mean anything: they’re just convenient indexing variables. That is, z = (1, 1, 2, 1, 3, 4) and
z = (2, 2, 1, 2, 4, 3) are effectively equivalent. Next, let nk denote the number of people
sitting at the kth table, and let K denote the total number of non-empty tables. Then
the “counts” vector n = (n1, . . . , nK) tells us how many people are at each table. To stick
with our running example, if the table assignment vector is z = (1, 1, 2, 1, 3, 4), then the
count vector would be n = (3, 1, 1, 1). Note that

∑
K

k=1 nk = N . Now that we’ve introduced
this terminology, it is very simple to describe the CRP. If there are currently N customers
sitting in the restaurant, then the probability that customer N + 1 sits at the kth table is



THE CHINESE RESTAURANT PROCESS 2

proportional to the popularity of that table:

P (zN+1 = k |n, α) =
nk

N + α
(1)

where α is called the “concentration parameter” or the “dispersion parameter” of the CRP.
Notice however, that there is some probability mass missing, since if we sum Equation 1 over
all K tables, it only adds up to N

N+α
. The reason for this is that there is some probability

that customer N + 1 decides to sit at a new table. If we decide to label this new table as
table K + 1, then

P (zN+1 = K + 1 |n, α) =
α

N + α
. (2)

Taken together, Equations 1 and 2 provide a characterisation of the Chinese restaurant
process. The core idea behind the CRP is really that simple.

The probability of a particular set of assignments z (with corresponding count vector
n) for a CRP with concentration parameter α is as follows:

P (z|α,N) =
Γ(α)

∏
K

k=1 Γ(nk)

Γ(N + α)
αK (3)

Using the properties of the gamma function (see the note on beta-binomial models if you’ve
forgotten about gamma functions), you can usually simplify this to something easier to
compute. However, there is very rarely any need to do this, since Equation 3 is almost
never used in practice. Almost every algorithm in which you might be interested will use
the conditional probabilities in Equations 1 and 2. For instance, suppose you wanted to
sample a set of assignments from the CRP. That is, generate

z|N,α ∼ CRP(α) (4)

The simplest way to do so is to loop through the observations, making assignments using
the conditional probability distributions. MATLAB code for doing this is given in Figure 1.
This code samples partitions from the distribution described in Equation 3, but uses the
conditional probabilities in Equations 1 and 2 to do so.

Why use the CRP?

The main attraction to the CRP is that it lets you define a “clumpy” distribution
over partitions, without needing to specify in advance how many groups there are. This is
rather useful. To illustrate the idea, here’s a simple example:

Suppose we asked one hundred people which number was the most unlucky. Of

those people, fifty said ‘13’, forty said ‘4’, and ten said ‘87’. These individual

differences are unlikely to be caused by chance. Instead, what we appear to have

are three distinct groups of people. How should we model these data?

Let’s consider a few possible approaches:



THE CHINESE RESTAURANT PROCESS 3

function [assignments,counts] = crprand(alpha,N)

% initialise everything

assignments = zeros(N,1); % assignments for each object

counts = zeros(N,1); % table counts (N is the max possible K)

assignments(1) = 1; % assign object 1 to table 1

counts(1) = 1; % adjust counts

counts(2) = alpha; % "fake" counts for table K+1

K = 1; % number of unique clusters

% sequentially assign other objects via CRP

for i = 2:N

% generate random number, and convert to a "quasi-count"

u = rand; % generate uniform random number

u = u * (i - 1 + alpha); % multiply by the CRP normalising contant

% find the corresponding table

z = 1; % indexing variable for the table

while u > counts(z)

u = u - counts(z); % subtract off that probability mass

z = z + 1; % move to the next table

end

% record the outcome and adjust

assignments(i) = z; % make the assignment

if t == K+1 % if it’s a new table

counts(z) = 1; % assign real count

counts(z+1) = alpha; % move the "fake" counts to next table

K = K+1; % update the number of clusters

else % if it’s an old table

counts(z) = counts(z) + 1; % increment count

end

end

% truncate the counts matrix for neatness. also, this takes

% care of the "fake" count mass in count(K+1)

counts = counts(1:K);

Figure 1. MATLAB code that generates a random partition of N objects, from a CRP with
concentration parameter α.

1. All partitions equally likely. What happens if we remove the clumpiness prop-
erty, and specify a uniform distribution over partitions? The number of ways of dividing N
objects into groups is given by the Nth Bell number, so this distribution is not too hard
to build. The main problem is that this approach makes the prediction that participant
number 101 is just as likely to say 91 as 13. Clumpiness is critical – it tells you that new
observations are more likely to be similar to old ones!

2. Fixed number of groups. What happens if we specify a fixed number of groups,
and use a K-means clustering algorithm or some similar method? Besides the obvious
problem that it you need to know the value of K, approach 2 has the exact opposite
problem to approach 1. Specifically, it makes no allowance for the unlikely-but-possible
situation in which participant 101 really does say 91.



THE CHINESE RESTAURANT PROCESS 4

3. Prior over the number of groups. Okay, why not go for the best of both worlds?
Specify some sensible distribution over the value of K, and then say that all partitions of
N items into exactly K groups are equally likely. That way, it’s still possible for participant
101 to choose 91 as the unlucky number, but we can choose a prior over K so that it’s more
likely that he or she will say 13, 4 or 87. However, this does have a problem: it implies that
participant 101 is just as likely to say 13 than 87, even though 87 was much more common.

4. Model the probabilities associated with each group. One sneaky idea might
be to try something like this: specify a prior over K, and assign some probability θk that
any given observation falls within the kth group. Then we could specify a prior over the
θk values, and integrate them out (very much like what Dan did with the particle filtering
version of the AI survey problem). This should mean that new observations are more likely
to be assigned to groups that already have a lot of objects assigned to them; but still allows
the value of K to grow as new observations arrive. It sounds like a lot of work, but it
would solve all of our problems. Actually, this is a very good idea. Better yet, someone
has already gone out and done all the hard work for you, and constructed a distribution
that does something very similar (though not exactly equivalent): it’s called the Chinese
restaurant process!

The point behind this discussion is that the CRP is a way of specifying a prior over
partitions that satisfies two critical requirements: (1) the number of groups K can grow as
the number of observations N increases, and (2) new observations are more likely to belong
to those groups that were “popular” among the old observations. To oversimplify a bit: the
CRP assumes that new observations are probably going to be similar to old ones, but they

might be different. This qualitative principle is very easy to state, and the CRP lets you
implement it in a very simple fashion, but a lot of other “obvious” models don’t.

What’s all this “infinite models” stuff?

[NOTE: You’re not expected to know the material in this section, and it’s not exam-
inable. We’ve only included it because it’s useful background material]

If you do go on to read any of the literature on the CRP, you’ll very quickly find
that people talk about the CRP as if it were an “infinite model”, and they seem to use the
following terms as if they mean the same thing:

• Chinese restaurant process (CRP)
• Dirichlet process (DP)
• Pólya urn scheme
• Stick-breaking process

Beware! These are not the same thing, but they are very similar. As a consequence, a lot of
academic papers are actually very unclear about which of these four things they mean, and
often use the wrong terms. In this section, we’ll try to clear up what each of these terms
means, and explain what the “infinite models” terminology is all about. However, we won’t
go into a lot of technical details, since it gets messy very quickly, and is beyond the scope
of this subject.



THE CHINESE RESTAURANT PROCESS 5

The place to start is with the “infinite models” terminology. To begin with, notice
that Equation 4 refers to “CRP(α)” and not to “CRP(α,N)”. This might strike you as
strange: since N is an input into the function in Figure 1, why is it not a parameter of
the CRP. The reason for this odd notation is that we’ve actually been a little imprecise
about what the CRP really is. Without going into technical details, the CRP is actually
a process, not a single distribution. That is, the CRP with parameter α actually defines a
sequence of distributions, for all N = 1, 2, . . . ,∞. Viewed from that perspective, N isn’t a
parameter of the CRP at all, because the CRP encompasses all possible values of N . This
might seem like pointless nitpicking, since in practice we need to specify the value of N
in order to be able to use the CRP, but it is closely related to how the CRP is actually
derived. Again, we won’t go into details, but the earlier description under the “modelling
the probabilities...” paragraph is a little bit misleading. The CRP doesn’t actually specify
a prior distribution over K. Rather, the CRP is constructed by taking a very particular
limit as N → ∞, K → ∞. That is, it commits to the idea that there really is an infinitely
large partition “out there”, but since you only ever see a finite number of observations, you
only ever observe a tiny, finite part of that partition. So when we choose N = 10 to specify
one of the distributions encompassed by the CRP(α) process, what we’re really doing is
asking something like “if there’s really a latent infinite partition out there, how much of it
would we expect to observe if we only have 10 data points?” That’s why people refer to
the CRP as if it defines a distribution over “infinite partitions”. There is genuinely a sense
in which it does exactly that: it’s just that you only ever see a finite part of that partition.

The next thing to do is explain the relationship between the CRP and these other
terms (“Dirichlet process”, etc). Again, we won’t include any of the maths and we won’t
go into much detail. However, here’s the quick summary:

• Chinese restaurant process. As we’ve described, the CRP defines a distribution
over a partition. If we let z∞ denote the infinite vector of assignments that you would obtain
if you followed the CRP until N → ∞, then we would say that z∞|α ∼ CRP(α). Since
we’ve already described the CRP in detail, there’s not much else to say.

• Stick-breaking process. To explain the distinction between the stick-breaking
process and the CRP, let’s suppose that z∞|α ∼ CRP(α), and (if you’ll pardon the slight
abuse of notation) let θk = nk/N denote the proportion of this infinite collection of obser-
vations that belong to the kth group. Since K → ∞, there are actually an infinite number
of θk values, so we can talk about the infinite vector θ∞. The stick breaking process works
much like the CRP, in that it is a process that encompasses all K = 1, 2, . . . ,∞, and as
K → ∞ we can say that θ∞ ∼ Stick(α). We won’t go into details, but the basic reason for
calling this a “stick breaking” process is by way of the following metaphor: imagine starting
with a stick of length 1. You generate θ1 by snapping the stick into two pieces. The length
of one of the two pieces becomes the θ1 value. To generate θ2, you then snap the other
piece in two; one of those two pieces becomes the value of θ2. As you repeat this process,
the length of the stick that you have left approaches zero. A little more formally, if the
length of the stick at iteration k is ℓk, then you can generate θk by sampling x ∼ Beta(1, α),
setting θk = xℓk, and setting ℓk+1 = (1− x)ℓk.

• Pólya urn scheme. In the CRP, we explicitly stated that the “table numbers”
were meaningless (and in the CRP they are). However, suppose that, instead of being
seated at a table, every customer in the restaurant is assigned a “colour”, and this colour is



THE CHINESE RESTAURANT PROCESS 6

meaningful. So the ith customer is assigned colour ci, and we assume that every customer
who would have been seated at the same table (had we been following a CRP) is assigned
the same colour. This is the Pólya urn scheme. Like the CRP, it is defined in terms
of a conditional distribution ci|c1, . . . , ci−1. However, since the “colours” are supposed to
correspond to meaningful parameters rather than arbitrary indexing variables, they are
generated from some distribution, usually denoted G0. When the Pólya urn scheme is
defined on its own terms, the description usually goes like this: in a Pólya urn scheme, we
imagine an urn full of α coloured balls, such that the proportion of balls with colour c is equal
to G0(c) where G0 is some probability distribution that is called the “base distribution”.
We sample the first colour c1 by drawing a ball at random from the urn and recording its
colour. We then return that ball to the urn and drop in another ball of the same colour,
“updating” the urn.

• Dirichlet process. The Dirichlet process (DP) is the most abstract of the lot, but
is the most general. It encompasses all of the above. Historically, the DP was invented first,
and the other things were all invented to provide tractable methods for using the DP. The
gist of the idea is this. Suppose we have a collection of N data points, cN = (c1, . . . , cN ), all
of which have been independently generated from some generic (but unknown) distribution
G. The Dirichlet process is a way of defining a prior over generic distributions, G. Our
prior over G says that the most likely possibility is that the distribution is G0, but we’re
not very confident about this prediction. Let’s let α denote our confidence: small α means
we’re not very confident so our prior is dispersed over lots of possible distributions G, and
large α means that the possible distributions are very concentrated around G0. So we have:

ci|G ∼ G (5)

G|G0, α ∼ DP(G0, α) (6)

The key thing here is that G is generated in a manner that is consistent with the CRP,
the stick breaking process and the Pólya urn scheme. For instance, one way to sample cN
would be to just generate the values using the Pólya urn. An alternative but equivalent
method would be to first sample zN from the CRP. Then, every customer at the kth table
is given the same colour, and that colour is independently sampled from G0. Finally, you
could (inefficiently) construct the entire distribution G by sampling θ∞ using the stick
breaking process, and associating each of the θk values with a colour (sampled from G0).
The probability that the ith customer is assigned the kth such colour is θk. The basic point
here is that the DP describes a “distribution over distributions”, and it does so in a way
that is consistent with all of the simpler things described above. Note, though, that the
DP can only generate discrete distributions. It can’t be used as a prior over continuous
distributions, and you get some very strange results if you try to use it that way.


